摘要:
A method for tailoring properties of high k thin layer perovskite materials, and devices comprising such insulators are herein presented. The method comprise the steps of, first, substantially completing the manufacture of a device, which device contains the high k insulator in a polycrystalline form. The device, such as a capacitor, or an FET, went through the typically high temperature manufacturing process of a fabrication line. In the next step, the device is in situ ion implanted with such a dose and energy to convert a fraction of the polycrystalline material into an amorphous material state, hereby tailoring the properties of the insulator. The fraction of polycrystalline material converted to amorphous material might be 1. This process can be applied to many electronic devices and some optical devices. The process results in novel perovskite thin layer materials and novel devices fabricated with such materials.
摘要:
A method for tailoring properties of high k thin layer perovskite materials, and devices comprising such insulators are herein presented. The method comprise the steps of, first, substantially completing the manufacture of a device, which device contains the high k insulator in a polycrystalline form. The device, such as a capacitor, or an FET, went through the typically high temperature manufacturing process of a fabrication line. In the next step, the device is in situ ion implanted with such a dose and energy to convert a fraction of the polycrystalline material into an amorphous material state, hereby tailoring the properties of the insulator. The fraction of polycrystalline material converted to amorphous material might be 1. This process can be applied to many electronic devices and some optical devices. The process results in novel perovskite thin layer materials and novel devices fabricated with such materials.
摘要:
Superconducting transition metal oxide films are provided which exhibit very high onsets of superconductivity and superconductivity at temperatures in excess of 40.degree. K. These films are produced by vapor deposition processes using pure metal sources for the metals in the superconducting compositions, where the metals include multi-valent nonmagnetic transition metals, rare earth elements and/or rare earth-like elements and alkaline earth elements. The substrate is exposed to oxygen during vapor deposition, and, after formation of the film, there is at least one annealing step in an oxygen ambient and slow cooling over several hours to room temperature. The substrates chosen are not critical as long as they are not adversely reactive with the superconducting oxide film. Transition metals include Cu, Ni, Ti and V, while the rare earth-like elements include Y, Sc and La. The alkaline earth elements include Ca, Ba and Sr.
摘要:
A superconducting device operable at temperatures in excess of 30° K. and a method for making the device are described. A representative device is an essentially coplanar SQUID device formed in a single layer of high Tc superconducting material, the SQUID device being operable at temperatures in excess of 60° K. High energy beams, for example ion beams, are used to convert selected portions of the high Tc superconductor to nonsuperconductive properties so that the material now has both superconductive regions and nonsuperconductive regions. In this manner a superconducting loop having superconducting weak links can be formed to comprise the SQUID device.
摘要:
An amorphous dielectric material having a dielectric constant of 10 or greater is provided herein for use in fabricating capacitors in integrated circuit applications. The amorphous dielectric material is formed using temperatures below 450° C.; therefore the BEOL metallurgy is not adversely affected. The amorphous dielectric material of the present invention exhibits good conformality and a low leakage current. Damascene devices containing the capacitor of the present invention are also disclosed.
摘要:
High-capacity capacitors and gate insulators exhibiting moderately high dielectric constants with surprisingly low leakage using amorphous or low temperature films of perovskite type oxides including a titanate system material such as barium titanate, strontium titanate, barium strontium titanate (BST), lead titanate, lead zirconate titanate, lead lanthanum zirconate titanate, barium lanthanum titanate, a niobate, aluminate or tantalate system material such as lead magnesium niobate, lithium niobate lithium tantalate, potassium niobate and potassium tantalum niobate, a tungsten-bronze system material such as barium strontium niobate, lead barium niobate, barium titanium niobate, and Bi-layered perovskite system material such as strontium bismuth tantalate, bismuth titanate deposited directly on a silicon surface at temperatures about 450° C. or less.
摘要:
A capacitor and method of making is described incorporating a semiconductor substrate, a bottom electrode formed on or in the substrate, a dielectric layer of barium or lead silicate, and a top electrode. A sandwich dielectric of a barium or lead silicate and a high dielectric constant material such as barium or lead titanate may form the dielectric. The silicate layer may be formed by evaporating and diffusing, ion implanting, or electroplating and diffusing barium or lead. The high epsilon dielectric constant material may be formed by sol gel deposition, metal organic chemical vapor deposition or sputtering. The invention overcomes the problem of a bottom electrode and dielectric layer which chemically interact to form a silicon oxide layer in series or below the desired dielectric layer.
摘要:
A capacitor and method of making is described incorporating a semiconductor substrate, a bottom electrode formed on or in the substrate, a dielectric layer of barium or lead silicate, and a top electrode. A sandwich dielectric of a barium or lead silicate and a high dielectric constant material such as barium or lead titanate may comprise the dielectric. The silicate layer may be formed by evaporating and diffusing, ion implanting, or electroplating and diffusing barium or lead. The high epsilon dielectric constant material may be formed by sol gel deposition, metal organic chemical vapor deposition or sputtering. The invention overcomes the problem of a bottom electrode and dielectric layer which chemically interact to form a silicon oxide layer in series or below the desired dielectric layer.
摘要:
Multilayer ferroelectric capacitor structures comprising a ferroelectric film having a combination of different ferroelectric materials or compositions such as strontium bismuth tantalate, strontium bismuth niobate, bismuth titanate, strontium bismuth tantalate niobate, lead zirconate titanate, lead lanthanum zirconate titanate are disclosed. A method of preparing the multilayer ferroelectric film containing at least two different ferroelectric materials and/or more than one composition of ferroelectric material is also disclosed.
摘要:
A capacitor and method of making is described incorporating a semiconductor substrate, a bottom electrode formed on or in the substrate, a dielectric layer of barium or lead silicate, and a top electrode. A sandwich dielectric of a barium or lead silicate and a high dielectric constant material such as barium or lead titanate may form the dielectric. The silicate layer may be formed by evaporating and diffusing, ion implanting, or electroplating and diffusing barium or lead. The high epsilon dielectric constant material may be formed by sol gel deposition, metal organic chemical vapor deposition or sputtering. The invention overcomes the problem of a bottom electrode and dielectric layer which chemically interact to form a silicon oxide layer in series or below the desired dielectric layer.