Abstract:
A semiconductor light emitting device includes a plurality of light emitting cells having first and second surface opposing each other, the plurality of light emitting cells including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer therebetween, an insulating layer on the second surface of the plurality of light emitting cells and having first and second openings defining a first contact region of the first conductivity-type semiconductor layer and a second contact region of the second conductivity-type semiconductor layer, respectively, a connection electrode on the insulating layer and connecting a first contact region and a second contact region of adjacent light emitting cells, a transparent support substrate on the first surface of the plurality of light emitting cells, and a transparent bonding layer between the plurality of light emitting cells and the transparent support substrate.
Abstract:
A semiconductor light emitting device includes a substrate, a semiconductor laminate disposed on the substrate and divided to a plurality of light emitting cells with an isolation region, and a wiring unit electrically connecting the plurality of light emitting cells. A region of lateral surfaces of each of the light emitting cells in which the wiring unit is disposed has a slope gentler than slopes of other regions of the lateral surfaces of each of the light emitting cells.
Abstract:
A light emitting device is provided. The light emitting device includes a first semiconductor layer; a second semiconductor layer provided on a bottom surface of the first semiconductor layer; an active layer interposed between the first semiconductor layer and the second semiconductor layer; a dielectric layer provided on a bottom surface of the second semiconductor layer; a plurality of first n-contacts provided on a first etched surface of the first semiconductor layer; and a plurality of first p-contacts and a plurality of second p-contacts provided on the bottom surface of the second semiconductor layer. One first n-contact is disposed along a first edge region of the first semiconductor layer, one first p-contact is closer to the one first n-contact than one second p-contact, and an area of the one first p-contact is greater than an area of each of the second p-contacts.
Abstract:
A filament type light emitting diode (LED) light source includes a plurality of LED modules, a coupler, and a common connection portion. The LED modules are in a polygonal prism structure and emit white light having different color temperatures or light of different wavelengths. Each LED module having a bar shape at a respective side surface of the polygonal prism structure and includes a first connection electrode and a second connection electrode. The coupler couples the LED modules to maintain the polygonal prism structure. The common connection portion is at one end of the polygonal prism structure and is commonly connected to the second connection electrode of each of the LED modules.
Abstract:
There is provided a semiconductor light emitting device including a conductive substrate, a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked. The contact area between the first electrode layer and the first semiconductor layer is 3% to 13% of the total area of the semiconductor light emitting device, and thus high luminous efficiency is achieved.
Abstract:
Provided is a vertical nitride-based LED including a first electrode; a first nitride semiconductor layer that is disposed on the first electrode; an active layer that is disposed on the first nitride semiconductor layer; a second nitride semiconductor layer that is disposed on the active layer; an ohmic contact pattern that is disposed on the second nitride semiconductor layer; a second electrode that is disposed on the ohmic contact pattern; and a bonding pad that is electrically connected to the second electrode and disposed on the second nitride semiconductor layer.
Abstract:
There is provided a semiconductor light emitting device including a conductive substrate, a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked. The contact area between the first electrode layer and the first semiconductor layer is 3% to 13% of the total area of the semiconductor light emitting device, and thus high luminous efficiency is achieved.
Abstract:
A light emitting device package includes: a plurality of light emitting chips configured to emit respective wavelength lights, each chip comprising electrodes at a bottom of the chip to form a flip-chip structure; a plurality of wirings directly connected to the electrodes of the chips, respectively; a plurality of electrode pads disposed below the chips and directly connected to the wirings, respectively; and a molding member integrally formed in a single layer structure to cover upper surfaces and side surfaces of the chips, and including a translucent material having a predetermined transmittance, wherein the wirings are disposed below a lower surface of the molding member.
Abstract:
There is provided a semiconductor light emitting device including a conductive substrate, a first electrode layer, an insulating layer, a second electrode layer, a second semiconductor layer, an active layer, and a first semiconductor layer that are sequentially stacked. The contact area between the first electrode layer and the first semiconductor layer is 3% to 13% of the total area of the semiconductor light emitting device, and thus high luminous efficiency is achieved.