Abstract:
A power device for surface mounting has a leadframe including a die-attach support and at least one first lead and one second lead. A die, of semiconductor material, is bonded to the die-attach support, and a package, of insulating material and parallelepipedal shape, surrounds the die and at least in part the die-attach support and has a package height. The first and second leads have outer portions extending outside the package, from two opposite lateral surfaces of the package. The outer portions of the leads have lead heights greater than the package height, extend throughout the height of the package, and have respective portions projecting from the first base.
Abstract:
In a manufacturing technique for packaged semiconductor devices, a pre-form of a packaged semiconductor device is formed by a molding process which encapsulates the semiconductor device and its associated heat transfer component in a passivating material presenting a surface. The surface is then processed to at least remove excess passivating material and expose the heat transfer component. The processing may further remove a portion of the heat transfer component. The removal process may, for example, utilize a grinding and/or polishing process. The process may be controlled so as to expose or form a heat transfer surface of desired shape and size.
Abstract:
An electronic power module comprising a case that houses a stack, which includes: a first substrate of a DBC type or the like; a die, integrating an electronic component having one or more electrical-conduction terminals, mechanically and thermally coupled to the first substrate; and a second substrate, of a DBC type or the like, which extends over the first substrate and over the die and presents a conductive path facing the die. The die is mechanically and thermally coupled to the first substrate by a first coupling region of a sintered thermoconductive paste, and the one or more conduction terminals of the electronic component are mechanically, electrically, and thermally coupled to the conductive path of the second substrate by a second coupling region of sintered thermoconductive paste.
Abstract:
An electronic power module comprising a case that houses a stack, which includes: a first substrate of a DBC type or the like; a die, integrating an electronic component having one or more electrical-conduction terminals, mechanically and thermally coupled to the first substrate; and a second substrate, of a DBC type or the like, which extends over the first substrate and over the die and presents a conductive path facing the die. The die is mechanically and thermally coupled to the first substrate by a first coupling region of a sintered thermoconductive paste, and the one or more conduction terminals of the electronic component are mechanically, electrically, and thermally coupled to the conductive path of the second substrate by a second coupling region of sintered thermoconductive paste.
Abstract:
A packaged device, having a package, including a first dissipative region, a second dissipative region, a first connection element and a second connection element. A die of semiconductor material is arranged within the package, carried by the first dissipative region. The first and second dissipative regions extend at a distance from each other, and the first and second connection elements extend at a distance from each other between the first and second dissipative regions. The first dissipative region, the second dissipative region, the first connection element, and the second connection element are hollow and form a circuit containing a cooling liquid.
Abstract:
An electronic device comprising: a semiconductor die integrating an electronic component; a leadframe housing the semiconductor die; a protection body, which surrounds laterally and at the top the semiconductor die and, at least in part, the leadframe structure, defining a top surface, a bottom surface, and a thickness of the electronic device; and a conductive lead electrically coupled to the semiconductor die. The conductive lead is modelled in such a way as to extend throughout the thickness of the protection body for forming a front electrical contact accessible from the top surface of the electronic device, and a rear electrical contact accessible from the bottom surface of the electronic device.
Abstract:
The device has a first support element forming a first thermal dissipation surface and carrying a first power component; a second support element forming a second thermal dissipation surface and carrying a second power component, a first contacting element superimposed to the first power component; a second contacting element superimposed to the second power component; a plurality of leads electrically coupled with the power components through the first and/or the second support elements; and a thermally conductive body arranged between the first and the second contacting elements. The first and the second support elements and the first and the second contacting elements are formed by electrically insulating and thermally conductive multilayers.
Abstract:
A power device for surface mounting has a leadframe including a die-attach support and at least one first lead and one second lead. A die, of semiconductor material, is bonded to the die-attach support, and a package, of insulating material and parallelepipedal shape, surrounds the die and at least in part the die-attach support and has a package height. The first and second leads have outer portions extending outside the package, from two opposite lateral surfaces of the package. The outer portions of the leads have lead heights greater than the package height, extend throughout the height of the package, and have respective portions projecting from the first base.
Abstract:
A semiconductor power device has: a die, with a front surface and a rear surface, and with an arrangement of projecting regions on the front surface, which define between them windows arranged within which are contact regions; and a package, which houses the die inside it. A metal frame has a top surface and a bottom surface; the die is carried by the frame on the top surface; an encapsulation coating coats the frame and the die. A first insulation multilayer is arranged above the die and is formed by an upper metal layer, a lower metal layer, and an intermediate insulating layer; the lower metal layer is shaped according to an arrangement of the projecting regions and has contact projections, which extend so as to electrically contact the contact regions, and insulation regions, interposed between the contact projections, in positions corresponding to the projecting regions.
Abstract:
A blocking element is provided for connecting an electronic, micro-mechanical and/or micro-electro-mechanical component, in particular for controlling the propulsion of an electric vehicle. The pin blocking element is formed by a holed body having a first end, a second end and an axial cavity configured for fittingly accommodating a connecting pin. A first flange projects transversely from the holed body at the first end and a second flange projects transversely from the holed body at the second end. The first flange has a greater area than the second flange and is configured to be ultrasonically soldered to a conductive bearing plate to form a power module.