Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer and a plurality of light emitting nanostructures disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer, an electric charge blocking layer, and a second conductivity-type semiconductor layer, respectively, wherein the first conductivity-type semiconductor core has different first and second crystal planes in crystallographic directions.
Abstract:
A light emitting device package includes a cell array including a plurality of semiconductor light emitting units, and having a first surface and a second surface opposite the first surface, each of the plurality of semiconductor light emitting units having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer stacked on each other. The light emitting device package may further include a plurality of wavelength conversion units disposed on the first surface of the cell array to correspond to the plurality of semiconductor light emitting units, respectively, each configured to convert a wavelength of light, emitted by a respective one of the plurality of semiconductor light emitting units, into a different wavelength of light, and a partition structure disposed in a space between the plurality of wavelength conversion units, and a plurality of switching units spaced apart from the plurality of wavelength conversion units within the partition structure, and electrically connected to the plurality of semiconductor light emitting units.
Abstract:
There is provided a semiconductor light emitting device including a first conductivity-type semiconductor base layer and a plurality of light emitting nanostructures disposed to be spaced apart from one another on the first conductivity-type semiconductor base layer, each light emitting nanostructure including a first conductivity-type semiconductor core, an active layer, an electric charge blocking layer, and a second conductivity-type semiconductor layer, respectively, wherein the first conductivity-type semiconductor core has different first and second crystal planes in crystallographic directions.
Abstract:
There is provided a semiconductor light-emitting device including a base layer formed of a first conductivity-type semiconductor material, and a plurality of light-emitting nanostructures disposed on the base layer to be spaced apart from each other, and including first conductivity-type semiconductor cores, active layers, and second conductivity-type semiconductor layers. The first conductivity-type semiconductor cores include rod layers extending upwardly from the base layer, and capping layers disposed on the rod layers. Heights of the rod layers are different in at least a portion of the plurality of light-emitting nanostructures, and heights of the capping layers are different in at least a portion of the plurality of light-emitting nanostructures.
Abstract:
A method of manufacturing a light emitting device includes forming light emitting devices on a support portion, each of the light emitting devices including first to third light emitting cells respectively emitting light of different colors; supplying test power to at least a portion of the light emitting devices using a multi-probe; acquiring an image from the light emitted from the portion of the light emitting devices to which the test power is supplied using an image sensor; identifying normal light emitting devices of the portion of the light emitting devices by determining whether a defect is present in each of the light emitting devices of the portion of the light emitting devices by comparing the image acquired by the image sensor with a reference image; and based on the identifying step, measuring optical characteristics of each of the light emitting devices identified as normal of the portion of the light emitting devices.
Abstract:
A light emitting device package includes a cell array including a plurality of semiconductor light emitting units, and having a first surface and a second surface opposite the first surface, each of the plurality of semiconductor light emitting units having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer stacked on each other. The light emitting device package may further include a plurality of wavelength conversion units disposed on the first surface of the cell array to correspond to the plurality of semiconductor light emitting units, respectively, each configured to convert a wavelength of light, emitted by a respective one of the plurality of semiconductor light emitting units, into a different wavelength of light, and a partition structure disposed in a space between the plurality of wavelength conversion units, and a plurality of switching units spaced apart from the plurality of wavelength conversion units within the partition structure, and electrically connected to the plurality of semiconductor light emitting units.
Abstract:
A light emitting device package includes a cell array including a plurality of semiconductor light emitting units, and having a first surface and a second surface opposite the first surface, each of the plurality of semiconductor light emitting units having a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer stacked on each other. The light emitting device package may further include a plurality of wavelength conversion units disposed on the first surface of the cell array to correspond to the plurality of semiconductor light emitting units, respectively, each configured to convert a wavelength of light, emitted by a respective one of the plurality of semiconductor light emitting units, into a different wavelength of light, and a partition structure disposed in a space between the plurality of wavelength conversion units, and a plurality of switching units spaced apart from the plurality of wavelength conversion units within the partition structure, and electrically connected to the plurality of semiconductor light emitting units.
Abstract:
According to an example embodiment, a method of manufacturing a nanostructure semiconductor light-emitting device includes forming nanocores of a first-conductivity type nitride semiconductor material on abase layer to be spaced apart from each other, and forming a multilayer shell including an active layer and a second-conductivity type nitride semiconductor layers on surfaces of each of the nanocores. At least a portion the multilayer shell is formed by controlling at least one process parameter of a flux of source gas, a flow rate of source gas, a chamber pressure, a growth temperature, and a growth rate so as to have a higher film thickness uniformity.