Abstract:
A method of manufacturing a gallium nitride (GaN)-based semiconductor light emitting device is provided. A light emitting structure is formed and includes an n-type semiconductor layer, an active layer and a p-type semiconductor layer formed of a nitride semiconductor containing gallium (Ga) on a substrate. A metal layer is disposed on the p-type semiconductor layer, and a heat treatment is performed to form a gallium(Ga)-metal compound. The gallium(Ga)-metal compound formed on the p-type semiconductor layer is removed. An electrode is disposed on an upper surface of the p-type semiconductor layer from which the gallium(Ga)-metal compound has been removed. The forming of the gallium(Ga)-metal compound includes forming a gallium vacancy in a surface of the p-type semiconductor layer.
Abstract:
There is provided a method of forming patterns for a semiconductor device. The method sequentially forming a first mask layer and a second mask layer on a substrate. The method also includes forming a second mask pattern layer by patterning the second mask layer. The method further includes forming a first mask pattern layer having a negative slope portion, by etching the first mask layer exposed through the second mask pattern layer. The method also includes forming a thin film layer on the substrate exposed through the first mask pattern layer.
Abstract:
A semiconductor light emitting device includes: a light emitting structure including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed therebetween; a first electrode disposed on the light emitting structure to be electrically connected to the first conductivity-type semiconductor layer; and a second electrode disposed on the light emitting structure to be electrically connected to the second conductivity-type semiconductor layer. The second electrode includes a first layer disposed on the second conductivity-type semiconductor layer, and a second layer disposed on the first layer, having a sheet resistance higher than that of the first layer, and having a thickness less than that of the first layer.
Abstract:
In a semiconductor light emitting device, a light emitting structure includes a first-conductivity type semiconductor layer, an active layer, and a second-conductivity type semiconductor layer, which are sequentially formed on a conductive substrate. A second-conductivity type electrode includes a conductive via and an electrical connection part. The conductive via passes through the first-conductivity type semiconductor layer and the active layer, and is connected to the inside of the second-conductivity type semiconductor layer. The electrical connection part extends from the conductive via and is exposed to the outside of the light emitting structure. An insulator electrically separates the second-conductivity type electrode from the conductive substrate, the first-conductivity type semiconductor layer, and the active layer. A passivation layer is formed to cover at least a side surface of the active layer in the light emitting structure. An uneven structure is formed on a path of light emitted from the active layer.
Abstract:
A semiconductor light emitting device and a fabrication method thereof are provided. The semiconductor light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer. A reflective structure is formed on the light emitting structure and includes a nano-rod layer comprised of a plurality of nano-rods and air filling space between the plurality of nano-rods and a reflective metal layer formed on the nano-rod layer.
Abstract:
A semiconductor light emitting device include an n-type semiconductor layer, an active layer disposed on the n-type semiconductor layer, and a first p-type semiconductor layer disposed on the active layer. The first p-type semiconductor layer has an uneven structure formed on a surface thereof. A second p-type semiconductor layer has an impurity concentration higher than that of the first p-type semiconductor layer. The second p-type semiconductor layer is disposed on the first p-type semiconductor layer and has an uneven structure formed on a surface thereof. A reflective metal layer is formed on the second p-type semiconductor layer.
Abstract:
A semiconductor light emitting device may include a substrate having a first surface and a second surface, the second surface being opposite to the first surface; a light emitting structure disposed on the first surface of the substrate and including a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer; and a reflector disposed on the second surface of the substrate and including a low refractive index layer and a Bragg layer, wherein the Bragg layer includes a plurality of alternately stacked layers having different refractive indices, and wherein a refractive index of the low refractive index layer is lower than a refractive index of the Bragg layer.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, and a selective transmission-reflection layer disposed on the light-emitting structure and including a plurality of dielectric layers having different optical thicknesses alternately stacked at least once. The sum of an optical thickness of a dielectric layer having a maximum optical thickness and an optical thickness of a dielectric layer having a minimum optical thickness is in the range of 0.75 to 0.80.