摘要:
The present invention is a system for detecting, tracking and recognizing human faces in a visual prosthesis. In a visual prosthesis, the input camera is always higher resolution than the electrode array providing percepts to the subject. It is advantageous to detect, track and recognize human faces. Then information can be provided to the subject by highlighting the face in the visual scene, providing auditor or vibratory notice that a human face is in the visual scene, looking up the face in a database to state the name of the person in the visual scene, otherwise communication id like providing a custom vibratory pattern corresponding to known individuals (like custom ring tones associated with caller ID) or automatically zooming in on a face to aid the subject in identifying the face.
摘要:
Electrode arrays for biological implants are disclosed. The present disclosure provides array designs for improving apposition (reducing the space between the array and neural tissue). The present disclosure also provides electrode array designs that can be made approximately spherical to increase the field of view of a visual prosthesis while still maintaining good apposition to neural tissue.
摘要:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package that is suitable for implantation in living tissue, for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
摘要:
The present invention is an improved hermetic package for implantation in the human body. The implantable device of the present invention includes an eclectically non-conductive bass including electrically conductive vias through the substrate. A circuit is flip-chip bonded to a subset of the vias. A second circuit is wire bonded to another subset of the vias. Finally, a cover is bonded to the substrate such that the cover, substrate and vias form a hermetic package.
摘要:
A method for fabricating a biocompatible hermetic housing including electrical feedthroughs, the method comprises providing a ceramic sheet having an upper surface and a lower surface, forming at least one via hole in said ceramic sheet extending from said upper surface to said lower surface, inserting a conductive thick film paste into said via hole, laminating the ceramic sheet with paste filled via hole between an upper ceramic sheet and a lower ceramic sheet to foam a laminated ceramic substrate, firing the laminated ceramic substrate to a temperature to sinter the laminated ceramic substrate and cause the paste filled via hole to form metalized via and cause the laminated ceramic substrate to form a hermetic seal around said metalized via, and removing the upper ceramic sheet and the lower ceramic sheet material from the fired laminated ceramic substrate to expose an upper and a lower surface of the metalized via.
摘要:
An implantable device, including a first electrically non-conductive substrate; a plurality of electrically conductive vias through the first electrically non-conductive substrate; a flip-chip multiplexer circuit attached to the electrically non-conductive substrate using conductive bumps and electrically connected to at least a subset of the plurality of electrically conductive vias; a flip-chip driver circuit attached to the flip-chip multiplexer circuit using conductive bumps; a second electrically non-conductive substrate attached to the flip-chip driver circuit using conductive bumps; discrete passives attached to the second electrically non-conductive substrate; and a cover bonded to the first electrically non-conductive substrate, the cover, the first electrically non-conductive substrate and the electrically conductive vias forming a hermetic package.
摘要:
Electrode arrays for biological implants are disclosed. The present disclosure provides array designs for improving apposition (reducing the space between the array and neural tissue). The present disclosure also provides electrode array designs that can be made approximately spherical to increase the field of view of a visual prosthesis while still maintaining good apposition to neural tissue.
摘要:
The present invention is an improved hermetic package for a retinal prosthesis implanted in the human body. The retinal prosthesis includes a flexible circuit electrode array suitable to stimulate the retina while connected to a hermetic package on the outside of the eye, the hermetic package including a cover and a base where the cover is bonded to the base such that the cover and base form the hermetic package.
摘要:
Electrode arrays for biological implants are disclosed, particularly for stimulating a retina. The present disclosure provides array for improving apposition (reducing the space between the array and the retina. The present disclosure also provides electrode array designs that can be made approximately spherical to increase the field of view of a visual prosthesis while still maintaining good apposition.
摘要:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a studbump connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.