Abstract:
Windows, or other types of transparent materials, may be constructed to passively allow light from alternate sources to pass therethrough, while also being able to actively produce artificial light for providing illumination from one side of the window by means of an incorporated optical waveguide that accepts light from an edge of the window and disperses it from only one side of the window.
Abstract:
Implementations and techniques are generally disclosed are generally described for providing a metal air batter comprising, a cathode tube included in the metal air battery, the cathode tube having a conductive outer surface and a hydrophobic inner surface configured to define a tube wall there between, wherein the tube wall includes polymeric material and an anode material that surrounds the cathode tube.
Abstract:
Disclosed are reactive fibers having a polycationic exterior surface to which multivalent peroxy anions are bound. The use of such fibers, mats of such fibers, and filters of such fibers, as well as methods of treating fluid streams, and rejuvenating such fibers, mats and filters are also disclosed.
Abstract:
A disposable menstrual fluid fractionation apparatus for use in situ during menstruation is disclosed. The apparatus may include a filter configured to remove a particulate component of menstrual fluid from a liquid component of the menstrual fluid. A receptacle may be coupled to the filter. The filter, receptacle, and an analyte sensor may be integrated into a disposable feminine hygiene product. The integrated analyte sensor may be configured to detect a target analyte in the liquid component and indicate the presence/concentration of the target analyte.
Abstract:
Technologies are generally described for a system and process effective to coat a substance with graphene. A system may include a first container including graphene oxide and water and a second container including a reducing agent and the substance. A third container may be operative relationship with the first container and the second container. A processor may be in communication with the first, second and third containers. The processor may be configured to control the third container to receive the graphene oxide and water from the first container and to control the third container to receive the reducing agent and the substance from the second container. The processor may be configured to control the third container to mix the graphene oxide, water, reducing agent, and substance under sufficient reaction conditions to produce sufficient graphene to coat the substance with graphene to produce a graphene coated substance.
Abstract:
Technologies are generally described for a nanocomposite polymer dielectric that may incorporate two types of nanoparticles and a polymer. One of the two types of nanoparticle may be a first, smaller nanoparticle, that may occupy spaces between larger second nanoparticles. Another of the two types of nanoparticle may be the second, larger, “high-κ” nanoparticle, which supports the overall dielectric constant of the material. In an applied electric field, the first, smaller nanoparticle may redistribute local charge to homogenize electric fields in the dielectric material, tending to avoid the development of “hot spots”. Such a two-nanoparticle nanocomposite dielectric material may provide increased dielectric breakdown strength and voltage endurance in comparison with a nanoparticle dielectric which only contains a single type of “high-κ” nanoparticle.
Abstract:
The present disclosure relates to controlling the release of growth factors for the promotion of angiogenesis. The growth factors or a polymer matrix are modified by photoactive compounds, such that the growth factors are not released into an active form until they are irradiated with light. The disclosure also relates to tissue engineering scaffolds comprising one or more polymers and at least two growth factors.
Abstract:
The present disclosure generally relates to conductive films and methods for forming conductive films. In some examples, a substrate may be provided having a dispersion of silica nanoparticles provided on a surface thereof. Carbon nanotubes may be adhered to the dispersion of silica nanoparticles on the surface of the substrate to provide the conductive film on the substrate.
Abstract:
Techniques are generally described that include electrokinetic pumping an emulsion comprising an ionic fluid and a nonpolar fluid to promote flow of the ionic fluid by electro-osmotic flow and drag the nonpolar fluid by viscous drag forces. In some examples, the electrokinetic pump may be utilized to deliver one or more reagents within a fluidic reactor system, such as a micro-scale reactor system. In some additional examples, a reagent may be dissolved in the nonpolar fluid of a first emulsion and pumped through the electrokinetic pump to a mixing channel to allow the reagent of the first emulsion to react with a reagent of second emulsion to form a reactive product.
Abstract:
Functionalized membranes for use in applications, such as electrodeionization, can be prepared simply and efficiently by associating a first element of a specific binding pair to a membrane surface and binding a second species comprising the second element of the specific binding pair and at least one functional group to form a complex on the membrane surface. Such membranes may be reversibly modified by disassociating the complex, thereby, providing a fresh surface which may be re-modified according to the preceding methods.