摘要:
The present invention provides a method for monolithic integration of multiple devices on an optoelectronic substrate. The method, in a preferred embodiment, includes forming an active layer having a given wavelength over a substrate. The method further includes forming an N-type doped layer over a portion of the active layer to form first and second active regions within the active layer, the first active region having the given wavelength and the second active region having an altered wavelength different from the given wavelength. In one exemplary embodiment, the conditions used to form the N-type doped layer, for example, dopant concentration, growth rate and temperature, cause the difference in wavelength between the given wavelength and the altered wavelength.
摘要:
The invention is a semiconductor optical device and method of fabrication where the device includes an active region with an active layer having a first index of refraction, and a blocking region having a second, lower index of refraction. A semiconductor layer having an index of refraction higher than the blocking region is formed over both the active and blocking regions so that the semiconductor layer is in closer proximity to the active layer in areas not covered by the blocking region so as to decrease the difference between the effective index of refraction in the active region and the effective refractive index of the blocking region. Such devices are particularly useful for pumping optical amplifiers since greater power can be achieved while maintaining single mode emission.
摘要:
A diffusion preventing barrier spike is disclosed. The spike prevents diffusion of dopants into another layer without forming a pn junction in the layer. The spikes are illustratively Al or an aluminum containing material such as AlAs and have a thickness on the order of 1 nm. The spikes of the present invention may be used to stop dopant diffusion out of a doped layer in a variety of III-V semiconductor structures, such a InP-based PIN devices.
摘要:
The present invention provides an optoelectronic device and a method of manufacture thereof. In one embodiment, the method of manufacturing the optoelectronic device may include creating a multilayered optical substrate and then forming a self aligned dual mask over the multilayered optical substrate. The method may further include etching the multilayered optical substrate through the self aligned dual mask to form a mesa structure.
摘要:
The present invention provides an optical device and a method of manufacture thereof. In one embodiment, the method of manufacturing the optical device may include isolating an end of a first layer from a cladding layer located over a mesa structure that has been formed from a substrate. The end of the first layer may be isolated from the cladding layer by encapsulating the end between second and third layers located adjacent the mesa structure.
摘要:
The present invention provides an optoelectronic device and a method of manufacture thereof. In one embodiment, the method of manufacturing the optoelectronic device may include creating a multilayered optical substrate and then forming a self aligned dual mask over the multilayered optical substrate. The method may further include etching the multilayered optical substrate through the self aligned dual mask to form a mesa structure.
摘要:
The present invention provides methods of manufacturing and integrating optical devices. In one embodiment, a method of integrating an optical device may include forming a first device over a substrate, and forming a second device over the substrate and adjacent the first device with a deposition gas having an etchant selective to a deposited component of the deposition gas.
摘要:
A semiconductor waveguide device and method for forming the same provide an InAlAs film as an etch stop layer. The InAlAs film does not etch in the CH4/H2 etch chemistry used to produce the device using reactive ion etching techniques. The etching process etches the waveguide layer and cladding layer or layers formed above the InAlAs layer, and exposes the InAlAs etch stop film to produce a waveguide device having desired physical characteristics.
摘要:
Optical semiconductor light guide device having a low divergence emergent beam, application to Fabry-Perot and distributed feedback lasers. According to the invention, the core of the guide of the device comprises at least one semiconductor layer (8), whose refractive index is higher than that of each of the confinement or cladding layers (4, 6) of the guide and at least one second semiconductor layer (10), whose refractive index is lower than that of each of the confinement or cladding layers or close thereto. Application to optical telecommunications.
摘要翻译:具有低发散出射光束的光学半导体光导装置,应用于Fabry-P + E,acu e + EE腐蚀和分布式反馈激光器。 根据本发明,器件的引导件的芯部包括至少一个半导体层(8),其折射率高于引导件的每个限制或覆层(4,6)的折射率,并且至少一个 第二半导体层(10),其折射率低于每个限制层或覆层或靠近其的折射率。 应用于光通信。
摘要:
An electronic HEMT transistor structure comprises a heterojunction formed from a first layer, called a buffer layer, of a first wide bandgap semiconductor material, and a second layer of a second wide bandgap semiconductor material, with a bandgap width EG2 larger than that Eg1 of the first material, and a two-dimensional electron gas flowing in a channel confined in the first layer under the interface of the heterojunction. The first layer furthermore comprises a layer of a BGaN material under the channel, with an average boron concentration of at least 0.1%, improving the electrical performance of the transistor. Application to microwave power components.