Lens-less digital microscope
    1.
    发明授权
    Lens-less digital microscope 有权
    无镜头数字显微镜

    公开(公告)号:US08624968B1

    公开(公告)日:2014-01-07

    申请号:US12880923

    申请日:2010-09-13

    IPC分类号: H04N9/47 H04N5/243 H04N7/18

    摘要: Exemplary embodiments provide microscope devices and methods for forming and using the microscope devices. The microscope device can include a light emitter array with each light emitter individually addressable to either emit or detect light signals. Magnified images of a sample object can be generated by a reflection mechanism and/or a transmission mechanism using one or more microscope devices in an imaging system. Real-time computer control of which microscope pixels are viewed can allow the user to digitally replicate the “fovea” function of human vision. Viewing an object from both sides in the double-sided microscope system and from multiple pixel positions can allow the microscope to reconstruct pseudo-3D images of the object.

    摘要翻译: 示例性实施例提供用于形成和使用显微镜装置的显微镜装置和方法。 显微镜装置可以包括光发射器阵列,每个发光器可单独寻址以发射或检测光信号。 可以通过使用成像系统中的一个或多个显微镜装置的反射机构和/或透射机构来生成样品的放大图像。 观察哪个显微镜像素的实时计算机控制可以允许用户数字地复制人类视觉的“中央凹”功能。 从双面显微镜系统和多个像素位置的两侧观察物体可以使显微镜重建物体的伪3D图像。

    Nanowire and larger GaN based HEMTs
    4.
    发明授权
    Nanowire and larger GaN based HEMTs 有权
    纳米线和较大的GaN基HEMT

    公开(公告)号:US08343823B2

    公开(公告)日:2013-01-01

    申请号:US13461331

    申请日:2012-05-01

    IPC分类号: H01L21/338

    摘要: Nanowire and larger, post-based HEMTs, arrays of such HEMTs, and methods for their manufacture are provided. In one embodiment, a HEMT can include a III-N based core-shell structure including a core member (e.g., GaN), a shell member (e.g., AlGaN) surrounding a length of the core member and a two-dimensional electron gas (2-DEG) at the interface therebetween. The core member including a nanowire and/or a post can be disposed over a doped buffer layer and a gate material can be disposed around a portion of the shell member. Exemplary methods for making the nanowire HEMTs and arrays of nanowire HEMTs can include epitaxially forming nanowire(s) and epitaxially forming a shell member from each formed nanowire. Exemplary methods for making the post HEMTs and arrays of post HEMTs can include etching a III-N layer to form III-N post(s) followed by formation of the shell member(s).

    摘要翻译: 提供了纳米线和更大的后置HEMT,这样的HEMT的阵列及其制造方法。 在一个实施例中,HEMT可以包括基于III-N的核 - 壳结构,其包括芯构件(例如,GaN),围绕芯构件的长度的壳构件(例如,AlGaN)和二维电子气 2-DEG)。 包括纳米线和/或柱的芯构件可以设置在掺杂缓冲层上方,并且栅极材料可以围绕壳构件的一部分设置。 用于制备纳米线HEMT和纳米线HEMT阵列的示例性方法可以包括外延形成纳米线并从每个形成的纳米线外延地形成壳部件。 用于制造后HEMT和后HEMT阵列的示例性方法可以包括蚀刻III-N层以形成III-N柱,随后形成壳构件。

    Nanowires, nanowire networks and methods for their formation and use
    6.
    发明授权
    Nanowires, nanowire networks and methods for their formation and use 有权
    纳米线,纳米线网络及其形成和使用的方法

    公开(公告)号:US09275857B1

    公开(公告)日:2016-03-01

    申请号:US14090150

    申请日:2013-11-26

    申请人: Stephen D. Hersee

    发明人: Stephen D. Hersee

    IPC分类号: H01L29/15 H01L21/02 H01L29/20

    摘要: Various embodiments provide non-planar nanowires, nanowire arrays, and nanowire networks as well as methods of their formation and applications. The non-planar nanowires and their arrays can be formed in a controlled manner on surfaces having a non-planar orientation. In embodiments, two or more adjacent nanowires from different surfaces can grow to merge together forming one or more nanowire branches and thus forming a nanowire network. In embodiments, the non-planar nanowires and nanowire networks can be used for cantilever oscillation, switching and transistor actions.

    摘要翻译: 各种实施例提供非平面纳米线,纳米线阵列和纳米线网络以及它们的形成和应用的方法。 非平面纳米线及其阵列可以以受控的方式形成在具有非平面取向的表面上。 在实施例中,来自不同表面的两个或更多个相邻的纳米线可以生长以合并在一起形成一个或多个纳米线分支,从而形成纳米线网络。 在实施例中,非平面纳米线和纳米线网络可用于悬臂振荡,开关和晶体管动作。

    Process for controlling indium clustering in ingan leds using strain arrays
    8.
    发明授权
    Process for controlling indium clustering in ingan leds using strain arrays 有权
    使用应变阵列控制铟簇中铟簇的工艺

    公开(公告)号:US07666696B2

    公开(公告)日:2010-02-23

    申请号:US11557737

    申请日:2006-11-08

    申请人: Stephen D. Hersee

    发明人: Stephen D. Hersee

    IPC分类号: H01L21/00

    摘要: Exemplary embodiments provide MQW semiconductor devices and methods for their manufacture. The MQW semiconductor devices can be formed by growing a MQW active region over a nanoscale periodic strain array. By using the nanoscale periodic strain array, the position, size, and composition of the In-rich clusters in the MQW active region can be controlled. This control of In-rich clusters can result in tighter wavelength control, which can be important for applications, such as, for example, lasers and LEDs.

    摘要翻译: 示例性实施例提供MQW半导体器件及其制造方法。 可以通过在纳米级周期性应变阵列上生长MQW有源区域来形成MQW半导体器件。 通过使用纳米级周期性应变阵列,可以控制MQW有源区中富In簇的位置,大小和组成。 富集簇的这种控制可以导致更紧密的波长控制,这对于诸如激光器和LED的应用可能是重要的。

    SOLID-STATE MICROSCOPE
    9.
    发明申请
    SOLID-STATE MICROSCOPE 有权
    固态显微镜

    公开(公告)号:US20100033561A1

    公开(公告)日:2010-02-11

    申请号:US12103920

    申请日:2008-04-16

    申请人: Stephen D. Hersee

    发明人: Stephen D. Hersee

    IPC分类号: H04N7/18 H01L33/00 H01L21/28

    摘要: Exemplary embodiments provide solid-state microscope (SSM) devices and methods for processing and using the SSM devices. The solid-state microscope devices can include a light emitter array having a plurality of light emitters with each light emitter individually addressable. During operation, each light emitter can be biased in one of three operating states including an emit state, a detect state, and an off state. The light emitter can include an LED (light emitting diode) including, but not limited to, a nanowire based LED or a planar LED to provide various desired image resolutions for the SSM devices. In an exemplary embodiment, for near-field microscopy, the resolution of the SSM microscope can be essentially defined by the pitch p, i.e., center-to-center spacing between two adjacent light emitters, of the light emitter array.

    摘要翻译: 示例性实施例提供了用于处理和使用SSM装置的固态显微镜(SSM)装置和方法。 固态显微镜装置可以包括具有多个发光体的光发射器阵列,每个发光体可单独寻址。 在操作期间,每个光发射器可以被偏置在包括发射状态,检测状态和关闭状态的三种操作状态之一中。 光发射器可以包括LED(发光二极管),其包括但不限于基于纳米线的LED或平面LED,以为SSM器件提供各种期望的图像分辨率。 在一个示例性实施例中,对于近场显微镜,SSM显微镜的分辨率可以基本上由光发射器阵列的间距p,即两个相邻发光体之间的中心到中心间隔定义。