摘要:
An ion implantation device equipped with a high-speed driving device which causes rotation of the a disk that supports semiconductor wafers around it outer periphery. A center position of the disk is the axis of the rotation of the high speed rotation. A low-speed driving device causes relative movement of the disk in a radial direction. The ion implantation device further has a control circuit which calculates the movement speed of the aforementioned low-speed driving device with reference to different spacings between wafers about the outer periphery and the distance from the center of the disk to the ion implantation position, and controls said low speed scan speed so that ions are uniformly implanted into the aforementioned wafers.
摘要:
An ion implantation device is equipped with a high-speed driving device which causes rotation of a disk that supports semiconductor wafers around its outer periphery. A center position of the disk is the axis of the high-speed rotation. A low-speed driving device causes relative movement of the disk in a radial direction. The ion implantation device calculates the movement speed of the low-speed driving device with reference to different spacings between wafers about the outer periphery and the distance from the center of the disk to the ion implantation position and controls the low speed scan speed so that ions are uniformly implanted into the wafers.
摘要:
This sheet production apparatus comprises a vessel defining a channel configured to hold a melt. The melt is configured to flow from a first point to a second point of the channel. A cooling plate is disposed proximate the melt and is configured to form a sheet on the melt. A spillway is disposed at the second point of the channel. This spillway is configured to separate the sheet from the melt.
摘要:
A plasma processing apparatus and method are disclosed which create a uniform plasma within an enclosure. In one embodiment, a conductive or ferrite material is used to influence a section of the antenna, where a section is made up of portions of multiple coiled segments. In another embodiment, a ferrite material is used to influence a portion of the antenna. In another embodiment, plasma uniformity is improved by modifying the internal shape and volume of the enclosure.
摘要:
An ion source, capable of generating high-density wide ribbon ion beam, utilizing inductively coupled plasma production is disclosed. As opposed to conventional ICP sources, the present disclosure describes an ICP source which is not cylindrical. Rather, the source is defined such that its width, which is the dimension along which the beam is extracted, is greater than its height. The depth of the source may be defined to maximize energy transfer from the antenna to the plasma. In a further embodiment, a multicusp magnetic field surrounding the ICP source is used to further increase the current density and improve the uniformity of the extracted ion beam. Ion beam uniformity can also be controlled by means of several independent controls, including gas flow rate, and input RF power.
摘要:
An apparatus to pump a melt is disclosed. The pump has a chamber that defines a cavity configured to hold the melt. A gas source is in fluid communication with the chamber. A first valve is between the chamber and a first pipe and a second valve is between the chamber and a second pipe. The valves may be check valves in one embodiment.
摘要:
A ribbon beam mass analyzer having a first and second solenoid coils and steel yoke arrangement. Each of the solenoid coils have a substantially “racetrack” configuration defining a space through which an ion ribbon beam travels. The solenoid coils are spaced apart along the direction of travel of the ribbon beam. Each of the solenoid coils generates a uniform magnetic field to accommodate mass resolution of wide ribbon beams to produce a desired image of ions generated from an ion source.
摘要:
A method and apparatus for controlling deflection, deceleration, and focus of an ion beam are disclosed. The apparatus may include a graded deflection/deceleration lens including a plurality of upper and lower electrodes disposed on opposite sides of an ion beam, as well as a control system for adjusting the voltages applied to the electrodes. The difference in potential between pairs of upper and lower electrodes are varied using a set of “virtual knobs” that are operable to independently control deflection and deceleration of the ion beam. The virtual knobs include control of beam focus and residual energy contamination, control of upstream electron suppression, control of beam deflection, and fine tuning of the final deflection angle of the beam while constraining the beam's position at the exit of the lens. In one embodiment, this is done by fine tuning beam deflection while constraining the beam position at the exit of the VEEF. In another embodiment, this is done by fine tuning beam deflection while measuring the beam position and angle at the wafer plane. In a further embodiment, this is done by tuning a deflection factor to achieve a centered beam at the wafer plane.
摘要:
An RF ion source utilizing a heating/RF-shielding element for controlling the temperature of an RF window and to act as an RF shielding element for the RF ion source. When the heating/RF shielding element is in a heating mode, it suppresses formation of unwanted deposits on the RF window which negatively impacts the transfer of RF energy from an RF antenna to a plasma chamber. When the heating/RF-shielding element is in a shielding mode, it provides an electrostatic shielding for the RF ion source.
摘要:
A method and apparatus for controlling deflection, deceleration, and focus of an ion beam are disclosed. The apparatus may include a graded deflection/deceleration lens including a plurality of upper and lower electrodes disposed on opposite sides of an ion beam, as well as a control system for adjusting the voltages applied to the electrodes. The difference in potential between pairs of upper and lower electrodes are varied using a set of “virtual knobs” that are operable to independently control deflection and deceleration of the ion beam. The virtual knobs include control of beam focus and residual energy contamination, control of upstream electron suppression, control of beam deflection, and fine tuning of the final deflection angle of the beam while constraining the beam's position at the exit of the lens. In one embodiment, this is done by fine tuning beam deflection while constraining the beam position at the exit of the VEEF. In another embodiment, this is done by fine tuning beam deflection while measuring the beam position and angle at the wafer plane. In a further embodiment, this is done by tuning a deflection factor to achieve a centered beam at the wafer plane.