Abstract:
An apparatus includes a wafer with a number of openings therein. For each opening, an LED device is coupled to a conductive carrier and the wafer in a manner so that each of the coupled LED device and a portion of the conductive carrier at least partially fill the opening. A method of fabricating an LED device includes forming a number of openings in a wafer. The method also includes coupling light-emitting diode (LED) devices to conductive carriers. The LED devices with conductive carriers at least partially fill each of the openings.
Abstract:
A method of forming a through-silicon-via (TSV) opening includes forming a TSV opening through a substrate. A recast of a material of the substrate on sidewalls of the TSV opening is removed with a first chemical. The sidewalls of the TSV opening are cleaned with a second chemical by substantially removing a residue of the first chemical.
Abstract:
A light-emitting diode structure includes an AuSn or AuIn-containing bonding layer over a substrate, a metal layer disposed over the bonding layer, a p-type doped gallium nitride (p-GaN) layer disposed over the metal layer, a n-type doped gallium nitride (n-GaN) layer approximate the p-GaN layer, a multiple quantum well structure disposed between the n-GaN and p-GaN layers, and a conductive contact disposed on the n-GaN layer. The n-GaN layer includes a rough surface with randomly distributed dips. The nano-sized dips have diameters distributed between about 100 nm and about 600 nm, have a dip density ranging from about 107 grains/cm2 to about 109 grains/cm2, and are spaced from each other with an average spacing S, average diameter D, and a ratio S/D that ranges between about 1.1 and about 1.5. The conductive contact is disposed on some of the nano-sized dips of the rough surface.
Abstract translation:发光二极管结构包括在衬底上的AuSn或含AuIn的结合层,设置在所述接合层上的金属层,设置在所述金属层上的p型掺杂的氮化镓(p-GaN)层, 掺杂氮化镓(n-GaN)层近似于p-GaN层,设置在n-GaN和p-GaN层之间的多量子阱结构和设置在n-GaN层上的导电接触。 n-GaN层包括具有随机分布的凹陷的粗糙表面。 纳米尺寸浸渍剂的直径分布在约100nm至约600nm之间,浸渍密度范围为约107粒/ cm 2至约109粒/ cm 2,并且以平均间隔S,平均直径D ,S / D的范围为约1.1至约1.5。 导电触点设置在粗糙表面的一些纳米尺寸的凹部上。
Abstract:
The present disclosure involves an apparatus. The apparatus includes a substrate having a front side a back side opposite the front side. The substrate includes a plurality of openings formed from the back side of the substrate. The openings collectively define a pattern on the back side of the substrate from a planar view. In some embodiments, the substrate is a silicon substrate or a silicon carbide substrate. Portions of the silicon substrate vertically aligned with the openings have vertical dimensions that vary from about 100 microns to about 300 microns. A III-V group compound layer is formed over the front side of the silicon substrate. The III-V group compound layer is a component of one of: a light-emitting diode (LED), a laser diode (LD), and a high-electron mobility transistor (HEMT).
Abstract:
Provided is a method of fabricating a light-emitting diode (LED) device. A wafer is provided. The wafer has a sapphire substrate and a semiconductor layer formed on the sapphire substrate. The semiconductor layer contains a plurality of un-separated LED dies. A photo-sensitive layer is formed over the semiconductor layer. A photolithography process is performed to pattern the photo-sensitive layer into a plurality of patterned portions. The patterned portions are separated by a plurality of openings that are each substantially aligned with one of the LED dies. A metal material is formed in each of the openings. The wafer is radiated in a localized manner such that only portions of the wafer that are substantially aligned with the openings are radiated. The sapphire substrate is removed along with un-radiated portions of the semiconductor layer, thereby separating the plurality of LED dies into individual LED dies.
Abstract:
A seed layer for growing a group 111-V semiconductor structure 1s embedded in a dielectric material on a carrier substrate. After the group 111-V semiconductor structure is grown, the dielectric material is removed by wet etch to detach the carrier substrate. The group 111-V semiconductor structure includes a thick gallium nitride layer of at least 100 microns or a light-emitting structure.
Abstract:
A device includes a substrate; a group III-V semiconductor layer disposed over the substrate; and a seed layer disposed over the group III-V semiconductor layer. The substrate is a printed circuit board. The group III-V semiconductor layer includes a multiple quantum well (MQW) layer, a p-type doped layer, and an n-type doped layer. The seed layer includes a plurality of miniature elements. The miniature elements each contain a single-crystal material suitable for epitaxially growing the group III-V semiconductor layer. The miniature elements collectively cover less than 100% of a surface of the group III-V semiconductor layer.
Abstract:
A Light-Emitting Diode (LED) is formed on a sapphire substrate that is removed from the LED by grinding and then etching the sapphire substrate. The sapphire substrate is ground first to a first specified thickness using a single abrasive or multiple abrasives. The remaining sapphire substrate is removed by dry etching or wet etching.
Abstract:
The present disclosure involves a method of packaging light-emitting diodes (LEDs). A carrier having a first side and a second opposite the first side is provided. The carrier includes a plurality of conductive interconnect elements. An integrated circuit (IC) die is bonded to the first side of the carrier. A packaging material having light-reflective properties is molded over the first and second sides of the carrier such that the IC die is sealed by the packaging material. A portion of the packaging material is molded into a reflective cap structure. A light-emitting diode (LED) is bonded to the second side of the carrier. Sidewalls of the reflective cap structure circumferentially surround the LED. The LED and the IC die are electrically coupled together through the conductive interconnect elements in the carrier. A lens is then formed over the LED.
Abstract:
A method includes forming an opening in a substrate, and the opening completely extends through the substrate. A recast material is formed on sidewalls of the substrate exposed by the opening. A first chemical is applied in the opening to remove the recast material, wherein a residue of the first chemical remains on portions of the sidewalls after the applying of the first chemical. Moreover, A second chemical is applied in the opening to remove the residue of the first chemical, and the second chemical is different from the first chemical.