摘要:
In one embodiment, the disclosure relates to a low-power semiconductor switching device, having a substrate supporting thereon a semiconductor body; a source electrode coupled to the semiconductor body at a source interface region; a drain electrode coupled to the semiconductor body at a drain interface region; a gate oxide film formed over a region of the semiconductor body, the gate oxide film interfacing between a gate electrode and the semiconductor body; wherein at least one of the source interface region or the drain interface region defines a sharp junction into the semiconductor body.
摘要:
The disclosure relates to a high purity 2H-SiC composition and methods for making same. The embodiments represented herein apply to both thin film and bulk growth of 2H-SiC. According to one embodiment, the disclosure relates to doping an underlying substrate or support layer with one or more surfactants to nucleate and grow high purity 2H-SiC. In another embodiment, the disclosure relates to a method for preparing 2H-SiC compositions by nucleating 2H-SiC on another SiC polytype using one or more surfactants. The surfactants can include AlN, Te, Sb and similar compositions. These nucleate SiC into disc form which changes to hexagonal 2H-SiC material.
摘要:
The disclosure relates to a method and apparatus for growth of high-purity 6H SiC single crystal using a sputtering technique. In one embodiment, the disclosure relates to a method for depositing a high purity 6H-SiC single crystal film on a substrate, the method including: providing a silicon substrate having an etched surface; placing the substrate and an SiC source in a deposition chamber; achieving a first vacuum level in the deposition chamber; pressurizing the chamber with a gas; depositing the SiC film directly on the etched silicon substrate from a sputtering source by: heating the substrate to a temperature below silicon melting point, using a low energy plasma in the deposition chamber; and depositing a layer of hexagonal SiC film on the etched surface of the substrate.
摘要:
Crystals formed of a solid-solution of K.sub.2 Ni(SO.sub.4).sub.2 6H.sub.2 O provide very good materials for filtering ultraviolet light and will not deteriorate in temperatures as high as 110.degree. C. They are particularly useful in sensing devices which seek to identify the presence of ultraviolet light in the UV missile warning band.
摘要:
Acousto-optical devices utilize crystals of a novel material thallium arsenic sulfide (Tl.sub.3 AsS.sub.3) grown from a melt. A Tl.sub.3 AsS.sub.3 crystal is cut and parallel faces are prepared and polished. A piezoelectric transducer connected to an RF generator is placed on the acoustic face to generate sound waves. The light is directed through the optical face of the crystal and interacts with the acoustic waves. These devices may be used in signal processing, spectrum analyzing, spectroscopic, liquid analyzing and spectral imaging systems.
摘要:
An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
摘要:
Crystals formed of Tl.sub.3 AsS.sub.3 provide very good materials for the nonlinear optical conversion efficiency. The crystals are useful in nonlinear optical devices such as harmonic generators and optical parametric oscillators, and in linear applications such as acousto-optical devices. The method of preparing such crystals is also disclosed.
摘要:
An integrated circuit includes a substrate material that includes an epitaxial layer, wherein the substrate material and the epitaxial layer form a first semiconductor material with the epitaxial layer having a first conductivity type. At least one nanowire comprising a second semiconductor material having a second conductivity type doped differently than the first conductivity type of the first semiconductor material forms a junction crossing region with the first semiconductor material. The nanowire and the first semiconductor material form an avalanche photodiode (APD) in the junction crossing region to enable single photon detection. In an alternative configuration, the APD is formed as a p-i-n crossing region where n represents an n-type material, i represents an intrinsic layer, and p represents a p-type material.
摘要:
A Si(1-x)MxC material for heterostructures on SiC can be grown by CVD, PVD and MOCVD. SIC doped with a metal such as Al modifies the bandgap and hence the heterostructure. Growth of SiC Si(1-x)MxC heterojunctions using SiC and metal sources permits the fabrication of improved HFMTs (high frequency mobility transistors), HBTs (heterojunction bipolar transistors), and HEMTs (high electron mobility transistors).
摘要:
Methods of producing polycrystalline and single crystal dielectrics are disclosed, including dielectrics comprising CaCu3Ti4O12 or La3Ga5SiO4. Superior single crystals are manufactured with improved crystallinity by atomic lattice constant adjustments to the dielectric and to the substrate on which it is grown. Dielectric materials made according to the disclosed methods are useful for manufacture of energy storage devices, e.g. capacitors.
摘要翻译:公开了生产多晶和单晶电介质的方法,包括包含CaC 3 3 Ti 4 O 12或La 3 N 3的电介质 > 5 sub> SiO 4。 通过原子晶格常数调整电介质及其生长衬底,制造出具有改善结晶度的高级单晶。 根据所公开的方法制备的电介质材料可用于制造储能装置,例如, 电容器