Abstract:
A method of manufacturing a semiconductor device includes: planarizing a surface of a substrate having a conductive material embedded in a first hole so as to expose the conductive material embedded in the first hole, wherein the first hole is formed in a region which is on an insulating film laminated on the substrate and is surrounded by a spacer film; laminating a mask film on the surface of the substrate; forming a second hole in the mask film such that at least a portion of an upper surface of the conductive material embedded in the first hole is exposed; embedding the conductive material in the second hole; and removing the mask film.
Abstract:
In a method of forming a tungsten film, an initial tungsten film and a main tungsten film are formed on an underlying film of a substrate. The initial tungsten film is formed on the underlying film by sequentially supplying a tungsten chloride gas and a reduction gas into a chamber while supplying a purging gas between the supplies of the tungsten chloride gas and the reduction gas, or by simultaneously supplying the tungsten chloride gas and the reduction gas. The main tungsten film is formed on the initial tungsten film by sequentially supplying the tungsten chloride gas and the reduction gas into the chamber while purging an inside of the chamber between the supplies of the tungsten chloride gas and the reduction gas. A supply amount of the tungsten chloride gas in forming the initial film is smaller than that in forming the main tungsten film.
Abstract:
There is provided a Cu wiring forming method for forming a Cu wiring by filling Cu in a recess, which is formed in a predetermined pattern in a Si-containing film of a substrate. The Cu wiring forming method includes forming a Mn film, which becomes a self-aligned barrier film by reaction with an underlying base, at least on a surface of the recess by chemical vapor deposition, forming a Cu film by a physical vapor deposition to fill the recess with the Cu film, and forming a Cu wiring in the recess by polishing the entire surface of the substrate by a chemical mechanical polishing.
Abstract:
When a recess is formed in a SiCOH film, C is removed from the film to form a damage layer. If the damage layer is removed by hydrofluoric acid or the like, the surface becomes hydrophobic. By supplying a boron compound gas, a silicon compound gas or a gas containing trimethyl aluminum to the SiCOH film, B, Si or Al is adsorbed on the SiCOH film. These atoms bond with Ru and a Ru film is easily formed on the SiCOH film. The Ru film is formed using, for example, Ru3(CO)12 gas and CO gas. Copper is filled in the recess and an upper side wiring structure is formed by carrying out CMP processing.
Abstract:
There is provided a method of reducing stress in a metal film that is highly stressed, the method including: processing the metal film by supplying a metal chloride gas containing a metal of the metal film and a reduction gas for reducing the metal chloride gas onto the metal film; and forming a process film on the metal film to reduce stress in the metal film.
Abstract:
A Cu wiring forming method forms Cu wiring in a recess of a predetermined pattern including a trench formed in an insulating film on a substrate surface. The method includes: forming a barrier film at least on a surface of the recess; forming a Cu film by PVD to fill the recess with the Cu film; forming an additional layer on the Cu film; polishing an entire surface by CMP to form the Cu wiring in the recess; forming a metal cap including a manganese oxide film on an entire surface including the insulating film and the Cu wiring of the substrate after performing the CMP polishing; and forming a dielectric cap on the metal cap.
Abstract:
A film deposition device includes a reaction gas supply part which is in communication with a process space defined between a placement part and a ceiling part. An annular gap in a plan view exists between an outer peripheral portion of the placement part and an outer peripheral portion of the ceiling part in circumferential directions of the placement part and the ceiling part. A reaction gas supplied from the reaction gas supply part into the process space via the ceiling part flows outside of the process space via the annular gap. A plurality of gas flow channels, which is used for forming gas-flow walls, is formed in the outer peripheral portion of the ceiling part which provides the annular gap.
Abstract:
There is provided a tungsten film forming method for forming a tungsten film on a target substrate disposed inside a chamber kept under a depressurized atmosphere and having a base film formed on a surface thereof, using a tungsten chloride gas as a tungsten raw material gas and a reducing gas for reducing the tungsten chloride gas, which includes: performing an SiH4 gas treatment with respect to the target substrate having the base film formed thereon by supplying an SiH4 gas into the chamber; and subsequently, forming the tungsten film by sequentially supplying the tungsten chloride gas and the reducing gas into the chamber while purging an interior of the chamber in the course of sequentially supplying the tungsten chloride gas and the reducing gas.
Abstract:
A method includes: forming a titanium nitride base film containing silicon by alternately repeating: precipitation of titanium nitride by alternately and repeatedly supplying a titanium-containing gas, and supplying a nitriding gas to a substrate on which a recess is formed; and precipitation of silicon nitride by alternately and repeatedly supplying a silicon-containing gas, and supplying a nitriding gas to the substrate; and subsequently, forming a tungsten film so as to bury tungsten in the recess in which the titanium nitride base film is formed, by alternately and repeatedly supplying a raw material gas containing a tungsten raw material and a reaction gas reacting with the raw material gas, to the substrate. A supply flow rate of the silicon-containing gas is adjusted so that a content of the silicon in the titanium nitride base film is high on an opening side rather than on an inner side of the recess.
Abstract:
Provided is a method of forming a copper (Cu) wiring in a recess formed to have a predetermined pattern in an insulating film formed on a surface of a substrate. The method includes: forming a barrier film at least on a surface of the recess, the barrier film serving as a barrier for blocking diffusion of Cu; forming a Ru film on the barrier film by Chemical Mechanical Deposition (CVD); forming a Cu alloy film on the Ru film by Physical Vapor Deposition (PVD) to bury the recess; forming a Cu wiring using the Cu alloy film buried in the recess; and forming a dielectric film on the Cu wiring.