摘要:
An integrated circuit package with a fully-exposed heat sink is provided. The integrated circuit package includes a substrate having a first side being formed with first conductive traces and a second side being formed with second conductive traces. At least one chip is mounted on the substrate and electrically connected to the first conductive traces. A plurality of solder balls are provided at the terminal ends of the second conductive traces to allow external connection of the chip. The fully-exposed heat sink is mounted on the substrate. The heat sink is formed with a plurality of supportive legs arranged in such a manner as to allow a bottom surface of the heat sink to be separated from the chip and a top surface of the heat sink to be tightly attached to a cavity in a mold used to form an encapsulant for enclosing the chip. A plurality of positioning tongues are formed on the heat sink for securing the heat sink in position when performing a molding process for forming the encapsulant. With this integrated circuit package, no jig is required in the assembly of the integrated circuit package. Moreover, since there is no need to use adhesives to adhere the supportive legs onto the substrate, the integrated circuit package would not suffer from delamination as in the case of the prior art. The fully-exposed heat sink allows an increased heat-dissipating efficient as compared to the prior art.
摘要:
This invention discloses a semiconductor device and a method for fabricating the same. The method includes providing a flexible carrier board having a first surface and a second surface opposite thereto; forming a metal lead layer and a first heat dissipating metal layer on the first surface of the flexible carrier board, and forming a second heat dissipating metal layer on the second surface of the flexible carrier board; providing a chip having an active surface and an opposed non-active surface, wherein a plurality of solder pads are formed on the active surface of the chip, each of the solder pads has a metal bump formed thereon and corresponding in position to the metal lead layer, and heat dissipating bumps are formed between the metal bumps corresponding in position to the first heat dissipating metal layer.
摘要:
An externally-embedded heat-dissipating device is designed for use with a BGA (Ball Grid Array) IC package for dissipating the IC-produced heat during operation to the atmosphere. that can help further increase the efficiency of heat dissipation from the BGA IC package. The heat-dissipating device is characterized in that it can be externally embedded in the top surface of the encapsulant without having to be supported on the substrate, and also in that it can help reduce the heat path from the IC chip to the heat-dissipating device so that heat-dissipation efficiency can be further increased as compared to the prior art. Further, the heat-dissipating device can help reduce manufacture cycle time and cost and also help prevent delamination, flash, and popcorn effect that would otherwise occur in the case of the prior art. It also can help save layout space over the substrate for compact design of the package. Overall speaking, the proposed heat-dissipating device is more advantageous to use than the prior art.
摘要:
A heat dissipation unit and a semiconductor package having the same are disclosed. The semiconductor package includes a carrier; an electronic component mounted on and electrically connected to the carrier; a heat dissipation unit, which includes a flat section attached to the electronic component, extension sections connected to the flat section, and a heat dissipation section connected to the extension sections; and an encapsulant encapsulating the electronic component and the heat dissipation unit, wherein stress releasing sections are at least disposed at intersectional corners between the extension sections and the flat section so as to prevent projections from being formed by concentrated stresses in a punching process of the heat dissipation unit, thereby maintaining flatness of the flat section and further preventing circuits of the electronic component from being damaged due to a contact point produced between the electronic component and the flat section in a molding process.
摘要:
A cavity-down ball grid array package includes a substrate having a through cavity provided therein. A heat sink is attached to the substrate and a semiconductor chip in the cavity is attached to the heat sink and electrically connected to the substrate. A ball grid array is on the substrate and on the semiconductor chip.
摘要:
A semiconductor package substrate includes a body having an upper surface and a lower surface opposite to one another, a plurality of circuit layers formed in the body, a plurality of solder pads formed on the upper surface of the body, and a plurality of solder ball pads formed on the lower surface of the body. Each of the solder pads is electrically connected to one of the solder ball pads via the circuit layers and conductive structures disposed between the circuit layers, wherein the circuit layers and conductive structures are configured to expand outwardly in a fan-out manner so as to provide more space between the circuit layers closer to the lower surface of the body such that part of the solder pad-solder ball pad electrical connections can comprise a plurality of parallel connected conductive structures formed in the space, thereby enhancing the heat conducting passageway and the effect of heat-dissipation without having to dispose more solder pads on surface of the substrate.
摘要:
A package substrate having landless conductive traces is proposed, which includes a core layer with a plurality of plated through holes formed therein, and a plurality of conductive traces formed on at least a surface of the core layer. Each of the conductive traces has a connection end, a bond pad end, and a base body connecting the connection end and the bond pad end, the conductive trace is electrically connected to a corresponding one of the plated through holes through the connection end, and the connection end has a width greater than that of the base body but not greater than the diameter of the plated through hole, thereby increasing the contact area between the conductive trace and the plated through hole and preventing the contact surface of the conductive trace with the plated through hole from cracking.
摘要:
A package substrate having landless conductive traces is proposed, which includes a core layer with a plurality of plated through holes formed therein, and a plurality of conductive traces formed on at least a surface of the core layer. Each of the conductive traces has a connection end, a bond pad end, and a base body connecting the connection end and the bond pad end, the conductive trace is electrically connected to a corresponding one of the plated through holes through the connection end, and the connection end has a width greater than that of the base body but not greater than the diameter of the plated through hole, thereby increasing the contact area between the conductive trace and the plated through hole and preventing the contact surface of the conductive trace with the plated through hole from cracking.
摘要:
The present invention discloses a flip-chip semiconductor package and a chip carrier thereof. The chip carrier includes a groove formed around a chip-mounting area. The groove may be formed along a periphery of the chip-mounting area or at corners thereof. The groove is filled with a filler of low Young's modulus so as to absorb and eliminate thermal stress, thereby preventing delamination between an underfill and a flip chip mounted on the chip-mounting area.
摘要:
A lead frame and a semiconductor package with the lead frame are provided. The lead frame includes a die pad for mounting at least one semiconductor chip thereon; at least one grounding portion protruded from the die pad; and a plurality of leads. The grounding portion has a grounding surface and an opposing bottom surface, wherein the thickness of the grounding portion is smaller than that of the die pad, and a ground pad is formed on the grounding surface for connecting at least one grounding wire to the chip for transmitting ground signals. A plurality of bonding wires are connected from the chip to the leads such that the chip can be electrically connected to an external device via the bonding wires and leads. By the above arrangement, the grounding wire can be prevented from breakage by thermal stress in a high-temperature process, and the production yield is improved.