Abstract:
A circuit board includes a semiconductor chip having an upper surface and side surfaces connected to the upper surface. A bonding pad is disposed on the upper surface of the semiconductor chip. A bump is disposed on the bonding pad and projects from the bonding pad by a predetermined height. A circuit board body has a recess part, and the semiconductor chip is positioned in the recess part so that the circuit board body covers the upper surface and the side surfaces of the semiconductor chip while exposing an end of the bump. A wiring line is disposed on the circuit board body and part of the wiring line is positioned over the bump. An opening is formed in a portion of the part of the wiring line over the bump to expose the bump. A reinforcing member physically and electrically connects the exposed bump and the wiring line.
Abstract:
A stacked semiconductor package having a unit package, cover substrates, adhesive members and connection electrodes is presented. The unit package includes a substrate, a first circuit pattern and a second circuit pattern. The first circuit pattern is disposed over an upper face of the substrate. The second circuit pattern is disposed over a lower face of the substrate. The lower and upper faces of the substrate oppose each other. The first and second semiconductor chips are respectively electrically connected to the first and second circuit patterns. The cover substrates are opposed to the first semiconductor chip and the second semiconductor chip. The adhesive members are respectively interposed between the unit package and the cover substrates. The connection electrodes pass through the unit package, the cover substrates and the adhesive members and are electrically connected to the first and second circuit patterns.
Abstract:
A stack package includes a core layer having a first surface and a second surface, and including first circuit wiring lines; a first semiconductor device disposed on the second surface of the core layer; a first resin layer formed on the second surface of the core layer to cover the first semiconductor device; second circuit wiring lines formed on the first resin layer and electrically connected with the first semiconductor device; a second semiconductor device disposed over the first resin layer including the second circuit wiring lines and electrically connected with the second circuit wiring lines; a second resin layer formed on the second circuit wiring lines and the first resin layer to cover the second semiconductor device; and a plurality of via patterns formed to pass through the first resin layer and the core layer and electrically connecting the first circuit wiring lines and the second circuit wiring lines.
Abstract:
The substrate for a semiconductor package includes a substrate body having a first surface and a second surface opposite to the first surface. Connection pads are formed near an edge of the first surface. Signal lines having conductive vias and first, second, and third line parts are formed. The first line parts are formed on the first surface and are connected to the connection pads and the conductive vias, which pass through the substrate body. The second line parts are formed on the first surface and connect to the conductive vias. The third line parts are formed on the second surface and connect to the conductive vias. The second and third line parts are formed to have substantially the same length. The semiconductor package utilizes the above substrate for processing data at a high speed.
Abstract:
A stacked semiconductor package having a unit package, cover substrates, adhesive members and connection electrodes is presented. The unit package includes a substrate, a first circuit pattern and a second circuit pattern. The first circuit pattern is disposed over an upper face of the substrate. The second circuit pattern is disposed over a lower face of the substrate. The lower and upper faces of the substrate oppose each other. The first and second semiconductor chips are respectively electrically connected to the first and second circuit patterns. The cover substrates are opposed to the first semiconductor chip and the second semiconductor chip. The adhesive members are respectively interposed between the unit package and the cover substrates. The connection electrodes pass through the unit package, the cover substrates and the adhesive members and are electrically connected to the first and second circuit patterns.
Abstract:
A bump for a semiconductor package includes: a first bump formed on a semiconductor chip and having at least two land parts and a connection part which connects the land parts and has a line width smaller than the land parts; and a second bump formed on the first bump and projecting on the land parts of the first bump in shapes of a hemisphere.
Abstract:
A stacked semiconductor package includes a plurality of stacked semiconductor chips each having a circuit unit, a data pad, and a chip selection pad. The plurality of stacked semiconductor chips also includes a plurality of chip selection through electrodes. The chip selection through electrodes penetrate the chip selection pads and the semiconductor chips, and the chip selection through electrodes receive chip selection signals. The chip selection pad of a semiconductor chip is electrically connected to the chip selection through electrode that receives the chip selection signal for selecting the semiconductor chip. The chip selection pad is electrically insulated from the chip selection through electrodes for receiving the chip selection signal for selecting a different semiconductor chip.
Abstract:
A through-silicon via stack package contains package units. Each package unit includes a semiconductor chip; a through-silicon via formed in the semiconductor chip; a first metal line formed on an upper surface and contacting a portion of a top surface of the through-silicon via; and a second metal line formed on a lower surface of the semiconductor chip and contacting a second portion of a lower surface of the through-silicon via. When package units are stacked, the second metal line formed on the lower surface of the top package unit and the first metal line formed on the upper surface of the bottom package unit are brought into contact with the upper surface of the through-silicon via of the bottom package unit and the lower surface of the through-silicon via of the top package unit, respectively. The stack package is lightweight and compact, and can form excellent electrical connections.
Abstract:
A wafer level package including a semiconductor chip having a plurality of bonding pads on a front surface thereof; a lower insulation layer formed on the semiconductor chip to expose the bonding pads; re-distribution lines formed on the lower insulation layer to be connected to the bonding pads at first ends thereof; an upper insulation layer formed on the lower insulation layer including the re-distribution lines, with portions of the re-distribution lines exposed; solder balls attached to the exposed portions of the re-distribution lines; and a cap covering a rear surface of the semiconductor chip.
Abstract:
Disclosed are a semiconductor chip package and a method for fabricating the same. The semiconductor chip package includes a semiconductor chip and a circuit board. The semiconductor chip is bonded to the circuit board by means of adhesive except for a metal-exposed region of the semiconductor chip. Anti-migration material is formed between the circuit board and a predetermined portion of the semiconductor chip, in which the predetermined portion of the semiconductor chip has no adhesive, in order to prevent material contained in the metal trace from migrating to the metal-exposed region of the semiconductor chip. A lamination phenomenon is not created between the circuit board and the semiconductor chip after the HAST has been carried out.