Abstract:
A manufacturing method of a chip package includes the following steps. A patterned solder paste layer is printed on a patterned conductive layer of a wafer. Plural solder balls are disposed on the solder paste layer that is on a first portion of the conductive layer. A reflow process is performed on the solder balls and the solder paste layer. A flux layer converted from a surface of the solder paste layer is cleaned.
Abstract:
A chip package includes a chip, an adhesive layer, and a dam element. The chip has a sensing area, a first surface, and a second surface that is opposite to the first surface. The sensing area is located on the first surface. The adhesive layer covers the first surface of the chip. The dam element is located on the adhesive layer and surrounds the sensing area. The thickness of the dam element is in a range from 20 μm to 750 μm, and the wall surface of the dam element surrounding the sensing area is a rough surface.
Abstract:
A wafer coating system includes a wafer chuck, a flowing insulating material sprayer and a wafer tilting lifting pin. The wafer chuck has a carrier part and a rotating part, which the carrier part is mounted on the rotating part to carry a wafer, and the rotating part is configured to rotate with a predetermined axis. The flowing insulating material sprayer is above the wafer chuck and configured to spray a flowing insulating material to the wafer, and the wafer tilting lifting pin is configured to form a first acute angle between the wafer and direction of gravity.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a first transparent substrate, a conductive layer, an insulating protective layer, a second transparent substrate, a device substrate, and a bonding layer. The first transparent substrate has a first surface and an opposite second surface. The conductive layer is disposed on the second surface of the first transparent substrate. The insulating protective layer covers the conductive layer and the first transparent substrate. The second transparent substrate is disposed above the first transparent substrate, and has a first surface facing the first transparent substrate and an opposite second surface. The device substrate is disposed on the second surface of the second transparent substrate. The bonding layer is bonded to the insulating protective layer and the first surface of the second transparent substrate.
Abstract:
A chip package includes a chip, a first adhesive layer, a second adhesive layer, and a protection cap. The chip has a sensing area, a first surface, a second surface that is opposite to the first surface, and a side surface adjacent to the first and second surfaces. The sensing area is located on the first surface. The first adhesive layer covers the first surface of the chip. The second adhesive layer is located on the first adhesive layer, such that the first adhesive layer is between the first surface and the second adhesive layer. The protection cap has a bottom board and a sidewall that surrounds the bottom board. The bottom board covers the second adhesive layer, and the sidewall covers the side surface of the chip.