Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A first isolation layer is formed on a first surface of a wafer substrate. A conductive pad is formed on the first isolation layer. A hollow region through the first surface and a second surface of the wafer substrate is formed, such that the first isolation layer is exposed through the hollow region. A laser etching treatment is performed on the first isolation layer that is exposed through the hollow region, such that a first opening is formed in the first isolation layer, and a concave portion exposed through the first opening is formed in the conductive pad.
Abstract:
A chip package including a substrate is provided. The substrate has a first surface and a second surface opposite thereto. The substrate includes a sensing region. A cover plate is on the first surface and covers the sensing region. A shielding layer covers a sidewall of the cover plate and extends towards the second surface. The shielding layer has an inner surface adjacent to the cover plate and has an outer surface away from the cover plate. The length of the outer surface extending towards the second surface is less than that of the inner surface extending towards the second surface, and is not less than that of the sidewall of the cover plate. A method of forming the chip package is also provided.
Abstract:
A manufacturing method of a chip package includes the following steps. A patterned solder paste layer is printed on a patterned conductive layer of a wafer. Plural solder balls are disposed on the solder paste layer that is on a first portion of the conductive layer. A reflow process is performed on the solder balls and the solder paste layer. A flux layer converted from a surface of the solder paste layer is cleaned.
Abstract:
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a first recess extending from the first surface towards the second surface; a second recess extending from a bottom of the first recess towards the second surface, wherein a sidewall and the bottom of the first recess and a second sidewall and a second bottom of the second recess together form an exterior side surface of the semiconductor substrate; a wire layer disposed over the first surface and extending into the first recess and/or the second recess; an insulating layer positioned between the wire layer and the semiconductor substrate; and a metal light shielding layer disposed over the first surface and having at least one hole, wherein a shape of the at least one hole is a quadrangle.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A first isolation layer is formed on a first surface of a wafer substrate. A conductive pad is formed on the first isolation layer. A hollow region through the first surface and a second surface of the wafer substrate is formed, such that the first isolation layer is exposed through the hollow region. A laser etching treatment is performed on the first isolation layer that is exposed through the hollow region, such that a first opening is formed in the first isolation layer, and a concave portion exposed through the first opening is formed in the conductive pad.
Abstract:
A chip package is provided. The chip package includes a semiconductor chip, an isolation layer, a redistributing metal layer, and at least a bonding pad. The semiconductor chip includes at least one conducting disposed on a surface of the semiconductor chip. The isolation layer is disposed on the surface of the semiconductor chip, wherein the isolation layer has at least one first opening to expose the first conducting pad. The redistributing metal layer is disposed on the isolation layer and has at least a redistributing metal line corresponding to the conducting pad, the redistributing metal line is connected to the first conducting pad through the first opening. The bonding pad is disposed on the isolation layer and one side of the semiconductor chip, wherein the redistributing metal line extends to the bonding pad to electrically connect the conducting pad to the bonding pad.
Abstract:
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a first recess extending from the first surface towards the second surface; a second recess extending from a bottom of the first recess towards the second surface, wherein a sidewall and the bottom of the first recess and a second sidewall and a second bottom of the second recess together form an exterior side surface of the semiconductor substrate; a wire layer disposed over the first surface and extending into the first recess and/or the second recess; an insulating layer positioned between the wire layer and the semiconductor substrate; and a metal light shielding layer disposed over the first surface and having at least one hole, wherein a shape of the at least one hole is a quadrangle.
Abstract:
A chip package includes: a substrate having a first and a second surfaces; a device region formed in or disposed on the substrate; a dielectric layer disposed on the first surface; at least one conducting pad disposed in the dielectric layer and electrically connected to the device region; a planar layer disposed on the dielectric layer, wherein a vertical distance between upper surfaces of the planar layer and the conducting pad is larger than about 2 μm; a transparent substrate disposed on the first surface; a first spacer layer disposed between the transparent substrate and the planar layer; and a second spacer layer disposed between the transparent substrate and the substrate and extending into an opening of the dielectric layer to contact with the conducting pad, wherein there is substantially no gap between the second spacer layer and the conducting pad.
Abstract:
A chip package includes a chip, an adhesive layer, and a dam element. The chip has a sensing area, a first surface, and a second surface that is opposite to the first surface. The sensing area is located on the first surface. The adhesive layer covers the first surface of the chip. The dam element is located on the adhesive layer and surrounds the sensing area. The thickness of the dam element is in a range from 20 μm to 750 μm, and the wall surface of the dam element surrounding the sensing area is a rough surface.
Abstract:
An embodiment of this invention provides a separation apparatus for separating a stacked article, such as a semiconductor chip package with sensing functions, comprising a substrate and a cap layer formed on the substrate. The separation apparatus comprises a vacuum nozzle head including a suction pad having a top surface and a bottom surface, a through hole penetrating the top surface and the bottom surface of the suction pad, and a hollow vacuum pipe connecting the through hole to a vacuum pump; a stage positing under the vacuum nozzle head and substantially aligning with the suction pad; a control means coupling to the vacuum nozzle head to lift upward or lower down the vacuum nozzle head; and a first cutter comprising a first cutting body and a first knife connecting to the first cutting body. The cap layer is pressed against by the bottom surface of the suction pad and sucked by the suction pad of the vacuum nozzle head after the vacuum pump begins to vacuum the air within the hollow vacuum pipe and the through hole. Then, the first cutter cuts into the interface between the substrate and the cap layer, and the cap lay is separated from the substrate by the suction force of the vacuum nozzle head and the lift force generated by the upward movement of the vacuum nozzle head.