摘要:
A semiconductor integrated circuit device is provided which includes a memory cell array located in a generally central area of a semiconductor substrate with peripheral circuits located at both ends of the semiconductor substrate. A wiring layer is also provided which couples the peripheral circuits to one another. This wiring layer is arranged to have a double-layer structure of first and second aluminum layers which are electrically coupled to one another.
摘要:
A semiconductor memory device is provided which includes a substrate arrangement which is suitable for forming a large number of types of DRAMs having different package specifications, different bit structure and different operating modes. In conjunction with this, the bonding pads are arranged at optimum locations for accommodating the different package types. Various layout arrangements are also provided to minimize space and to improve access time. Additional features are provided, including improved output buffer circuitry, protection circuitry and testing methods to facilitate operation of the semiconductor memory device.
摘要:
A semiconductor memory device is provided which includes a substrate arrangement which is suitable for forming a large number of types of DRAMs having different package specifications, different bit structure and different operating modes. In conjunction with this, the bonding pads are arranged at optimum locations for accommodating the different package types. Various layout arrangements are also provided to minimize space and to improve access time. Additional features are provided, including improved output buffer circuitry, protection circuitry and testing methods to facilitate operation of the semiconductor memory device.
摘要:
A semiconductor memory device is provided which includes a substrate arrangement which is suitable for forming a large number of types of DRAMs having different package specifications, different bit structure and different operating modes. In conjunction with this, the bonding pads are arranged at optimum locations for accommodating the different package types. Various layout arrangements are also provided to minimize space and to improve access time. Additional features are provided, including improved output buffer circuitry, protection circuitry and testing methods to facilitate operation of the semiconductor memory device.
摘要:
A semiconductor integrated circuit memory structure is provided which uses macro-cellulated circuit blocks that can permit a very large storage capability (for example, on the order of 64 Mbits in a DRAM) on a single chip. To achieve, this, a plurality of macro-cellulated memory blocks can be provided, with each of the memory blocks including a memory array as well as additional circuitry such as address selection circuits and input/output circuits. Other peripheral circuits are provided on the chip which are common to the plurality of macro-cell memory blocks. The macro-cell memory blocks themselves can be formed in an array so that their combined storage capacity will form the large overall storage capacity of the chip. The combination of the macro-cell memory blocks and the common peripheral circuitry for controlling the memory blocks permits a faster and more efficient refreshing operation for a DRAM. This is enhanced by a LOC (Lead On Chip) arrangement used in conjunction with the memory blocks.
摘要:
According to one aspect of the present invention, a semiconductor chip, which can be mounted in a zigzag in-line type package (ZIP) partially using a tabless lead frame, includes bonding pads arranged on the chip so that the chip can be applied also to other different types of packages. These different types of packages include a small out-line J-bent type package (SOJ) which uses a lead frame with tab, and a dual in-line type package (DIP) which uses a tabless lead frame. Further, a plurality of bonding pad pairs are provided amongst the bonding pads on the chip, each pad of such bonding pad pairs having the same function as the other pad associated therewith thereby duplicating a common function in different bonding pads on the semiconductor chip so as to make the semiconductor chip compatible with a variety of or different types of packages. In accordance with another aspect of the invention, a resin-encapsulated semiconductor device of the ZIP structure is provided in which a semiconductor pellet having a plurality of external terminals disposed on a device-forming surface along each side of the planar shape is encapsulated with a resin, wherein inner leads for signals connected electrically with external terminals, disposed opposing to the surface of the resin-encapsulated portion disposed with outer leads and disposed along the most remote side of the semiconductor pellet, are arranged so as to overlap the semiconductor pellet.
摘要:
According to the present invention, a semiconductor chip is mounted on a zigzag in-line type package (ZIP) partially using a tabless lead frame and bonding pads are arranged on the chip so that the chip can be applied also to other different types of packages. As different types of packages there are a small out-line J-bent type package (SOJ) for which there is used a lead frame with tab and a dual in-line type package (DIP) for which there is used a tabless lead frame. Further, a plurality of bonding pad pairs are provided among the bonding pads on the chip each pad of such bonding pad pairs having the same function as the other pad associated therewith thereby duplicating a common function in different bonding pads on the semiconductor chip so as to readily facilitate, or make compatible, the semiconductor chip to a variety of or different types of packages.
摘要:
Disclosed is a semiconductor device having an internal circuit protected by an electrostatic protective circuit, the internal circuit and electrostatic protective circuit being formed on the same semiconductor substrate. The internal circuit includes MIS elements and has a double-diffused drain structure, while the protective circuit has a single-diffused drain structure. The internal circuit can be, e.g., a DRAM, and the protective circuit can have diffused resistors and clamping MIS elements. The single-diffused drain structure can be formed in the protective circuit on the semiconductor substrate, while providing double-diffused drain structure in the internal circuit on the same substrate, by: (1) scanning the ion implanting apparatus to avoid ion implantation of the first ions into the region of the protective circuit, and/or (2) forming a photoresist film over the region of the protective circuit to prevent ion implanation of the first ions into the protective circuit region. As a further embodiment of the present invention, a semiconductor integrated circuit device is provided wherein the source and drain regions of an MOSFET in the internal circuit have lightly doped drain (LDD) structure in order to suppress the appearance of hot carriers, and the source and drain regions of an MOSFET in the input/output circuit have structure doped with phosphorus at a high impurity concentration, in order to enhance an electrostatic breakdown voltage.
摘要:
Disclosed is a semiconductor device having an internal circuit protected by an electrostatic protective circuit, the internal circuit and electrostatic protective circuit being formed on the same semiconductor substrate. The internal circuit includes MIS elements and has a double-diffused drain structure, while the protective circuit has a single-diffused drain structure. The internal circuit can be, e.g., a DRAM, and the protective circuit can have diffused resistors and clamping MIS elements. The single-diffused drain structure can be formed in the protective circuit on the semiconductor substrate, while providing double-diffused drain structure in the internal circuit on the same substrate, by: (1) scanning the ion implanting apparatus to avoid ion implantation of the first ions into the region of the protective circuit, and/or (2) forming a photoresist film over the region of the protective circuit to prevent ion implanation of the first ions into the protective circuit region. As a further embodiment of the present invention, a semiconductor integrated circuit device is provided wherein the source and drain regions of an MOSFET in the internal circuit have lightly doped drain (LDD) structure in order to suppress the appearance of hot carriers, and the source and drain regions of an MOSFET in the input/output circuit have structure doped with phosphorus at a high impurity concentration, in order to enhance an electrostatic breakdown voltage.
摘要:
Disclosed is a semiconductor device having an internal circuit protected by an electrostatoc protective circuit, the internal circuit and electrostatic protective circuit being formed on the same semiconductor substrate. The internal circuit includes MIS elements and has a double-diffused drain structure, while the protective circuit has a single-diffused drain structure. The internal circuit can be, e.g., a DRAM, and the protective circuit can have diffused resistors and clamping MIS elements. The single-diffused drain structure can be formed in the protective circuit on the semiconductor substrate, while providing double-diffused drain structure in the internal circuit on the same substrate, by: (1) scanning the ion implanting apparatus to avoid ion implantation of the first ions into the region of the protective circuit, and/or (2) forming a photoresist film over the region of the protective circuit to prevent ion implanation of the first ions into the protective circuit region. As a further embodiment of the present invention, a semiconductor integrated circuit device is provided wherein the source and drain regions of an MOSFET in the internal circuit have lightly doped drain (LDD) structure in order to suppress the appearance of hot carriers, and the source and drain regions of an MOSFET in the input/output circuit have structure doped with phosphorus at a high impurity concentration, in order to enhance an electrostatic breakdown voltage.