摘要:
An electrode for a semiconductor device is formed on the mounting surface (particularly, the outer periphery thereof) of a semiconductor substrate in a semiconductor module. In order to secure a large gap between the electrodes, an insulating layer is formed on the electrode. Also formed are a plurality of bumps penetrating the insulating layer and connected to the electrode, and a rewiring pattern integrally formed with the bumps. The rewiring pattern includes a bump area and a wiring area extending contiguously with the bump area. The insulating layer is formed to have a concave upper surface in an interval between the bumps, and the wiring area of the rewiring pattern is formed to fit that upper surface. The wiring area of the rewiring pattern is formed to be depressed toward the semiconductor substrate in relation to the bump area of the rewiring pattern.
摘要:
A device mounting board includes: an insulating resin layer; a wiring layer disposed on one main surface of the insulating resin layer; and a bump electrode connected electrically to the wiring layer and protruding on a side of the insulating resin layer from the wiring layer. A side surface of the bump electrode is curved inwardly toward the center axis of the bump electrode as viewed in a cross section including the center axis of the bump electrode, and the radius of curvature of the side surface changes continuously from a wiring layer end to a head end of the bump electrode.
摘要:
The present invention provides a method of joining a metal that can join coppers at a relatively low temperature by a simple technique while maintaining connection reliability.The space between a first coating portion (14) (a copper oxide) coating a first base portion (12) (copper) and a second coating portion (24) (a copper oxide) coating a second base portion (22) (copper) is filled with a solution (30) in which the copper oxide of the first coating portion (14) and the copper oxide of the second coating portion (24) are to be eluted. As a result, the copper oxides forming the first coating portion (14) and the second coating portion (24) are eluted in the solution (30). To increase the pressure of the solution (30), pressure is applied to a first to-be-joined portion (10) and a second to-be-joined portion (20) with a pressing machine. During the pressure application, heating is performed at a relatively low temperature of 200 to 300° C., to remove the components other than the copper in the solution (30) and precipitate the copper. The first base portion (12) and the second base portion (22) are joined to each other by the precipitated copper.
摘要:
An electrode for a semiconductor device is formed on the mounting surface (particularly, the outer periphery thereof) of a semiconductor substrate in a semiconductor module. In order to secure a large gap between the electrodes, an insulating layer is formed on the electrode. Also formed are a plurality of bumps penetrating the insulating layer and connected to the electrode, and a rewiring pattern integrally formed with the bumps. The rewiring pattern includes a bump area and a wiring area extending contiguously with the bump area.The insulating layer is formed to have a concave upper surface in an interval between the bumps, and the wiring area of the rewiring pattern is formed to fit that upper surface. The wiring area of the rewiring pattern is formed to be depressed toward the semiconductor substrate in relation to the bump area of the rewiring pattern.
摘要:
On a substrate are sequentially formed a first interconnection 203, a diffusion barrier film 205 and a second insulating film 207, and on the upper surface of the second insulating film 207 is then formed a sacrificial film 213. Next, a via hole 211 and an interconnection trench 217 are formed, and on the sacrificial film 213 are then formed a barrier metal film 219 and a copper film 221. CMP for removing the extraneous copper film 221 and barrier metal film 219 are conducted in a two-step process, i. e., the first polishing where polishing is stopped on the surface of the barrier metal film 219 and the second polishing where the remaining barrier metal film 219 and the tapered sacrificial film 213 are polished.
摘要:
The invention provides an electrostatically chucking technology capable of chucking a workpiece formed of an insulator or a workpiece attached with an object to be processed such as a semiconductor wafer on a stage. A layered body attached with a glass substrate for supporting a semiconductor substrate having an electronic device on its surface is prepared, and a conductive film is attached thereto. Then, the layered body is set on a surface of a stage set in a vacuum chamber such as a dry-etching apparatus. After then, a voltage is applied to an internal electrode to generate positive and negative electric charges on the surfaces of the conductive film and the stage, and the layered body is chucked with static electricity generated therebetween. Then, the layered body chucked on the stage is processed by etching, CVD, or PVD.
摘要:
A semiconductor module is of a structure such that a wiring layer, an insulating resin layer and a semiconductor device are stacked in this order by bonding them together with compression. In the wiring layer, bump electrodes each having a base and a tip portion are provided in positions corresponding respectively to device electrodes of the semiconductor device. The bump electrodes penetrate the insulating resin layer and are electrically coupled to the corresponding device electrodes.
摘要:
A first circuit element and a second element are mounted with their electrode forming surfaces facing a wiring layer. A first bump electrode formed integrally with the wiring layer on one face substantially penetrates a first insulating resin layer. A gold plating layer covering an element electrode of the first circuit element and a gold plating layer disposed on top of the first bump electrode are bonded together by Au—Au bonding. A second bump electrode formed integrally with the wiring layer on one face substantially penetrates the first and the second insulating resin layer. A gold plating layer covering an element electrode of the second circuit element and a gold plating layer disposed on top of the second bump electrode are bonded together by Au—Au bonding.
摘要:
A manufacturing technology is provided capable of improving the reliability of a semiconductor module having a via contact connected to an electrode part of a semiconductor component. The semiconductor module includes: a semiconductor component provided with an electrode part on a mounting surface; an insulating layer provided on the mounting surface of the semiconductor component; a wiring layer formed on the insulating layer; a first conductor part which is embedded in the insulating layer and which is in contact with the electrode part; and a second conductor part which is formed in an aperture provided in the insulating layer above the first conductor part and which electrically connects the first conductor part and the wiring layer.
摘要:
A first circuit element and a second element are mounted with their electrode forming surfaces facing a wiring layer. A first bump electrode formed integrally with the wiring layer on one face substantially penetrates a first insulating resin layer. A gold plating layer covering an element electrode of the first circuit element and a gold plating layer disposed on top of the first bump electrode are bonded together by Au—Au bonding. A second bump electrode formed integrally with the wiring layer on one face substantially penetrates the first and the second insulating resin layer. A gold plating layer covering an element electrode of the second circuit element and a gold plating layer disposed on top of the second bump electrode are bonded together by Au—Au bonding.