摘要:
A semiconductor device with improved reliability and its manufacturing method is offered. The semiconductor device of this invention includes a pad electrode formed on a semiconductor substrate through a first insulation layer, and a via hole formed in the semiconductor substrate and extending from a back surface of the semiconductor substrate to the pad electrode, wherein the via hole includes a first opening of which a diameter in a portion close to the pad electrode is larger than a diameter in a portion close to the back surface of the semiconductor substrate, and a second opening formed in the first insulation layer and continuing from the first opening, of which a diameter in a portion close to the pad electrode is smaller than a diameter in a portion close to the front surface of the semiconductor substrate.
摘要:
In a power MOS transistor, for example, a source electrode is formed so as to be commonly connected to a plurality of source regions formed on the front surface. Thus, a current density varies based on in-plane resistance of the source electrode, thereby providing the necessity of increasing the number of wires connecting the sources and a lead. In the invention, an electrode structure includes a copper plating layer 10e formed on a pad electrode 10a by an electrolytic plating method, and a nickel plating layer 10f and a gold plating layer formed so as to cover the upper and side surfaces of the copper plating layer 10e by an electroless plating method.
摘要:
A semiconductor device with improved reliability and its manufacturing method is offered. The semiconductor device of this invention includes a pad electrode formed on a semiconductor substrate through a first insulation layer, and a via hole formed in the semiconductor substrate and extending from a back surface of the semiconductor substrate to the pad electrode, wherein the via hole includes a first opening of which a diameter in a portion close to the pad electrode is larger than a diameter in a portion close to the back surface of the semiconductor substrate, and a second opening formed in the first insulation layer and continuing from the first opening, of which a diameter in a portion close to the pad electrode is smaller than a diameter in a portion close to the front surface of the semiconductor substrate.
摘要:
The invention is directed to a semiconductor device having a penetrating electrode and a manufacturing method thereof in which reliability and a yield of the semiconductor device are enhanced. A semiconductor substrate is etched to form a via hole from a back surface of the semiconductor substrate to a pad electrode. This etching is performed under an etching condition such that an opening diameter of the via hole at its bottom is larger than a width of the pad electrode. Next, a second insulation film is formed on the back surface of the semiconductor substrate including in the via hole 16, exposing the pad electrode at the bottom of the via hole. Next, a penetrating electrode and a wiring layer are formed, being electrically connected with the pad electrode exposed at the bottom of the via hole 16. Furthermore, a protection layer and a conductive terminal are formed. Finally, the semiconductor substrate is cut and separated in semiconductor dies by dicing.
摘要:
The first pad electrode layer is disposed on the surface of the semiconductor substrate with the first insulating film between them. Then, the second insulating film with the first via hole partially exposing the first pad electrode layer is formed over the first pad electrode layer. The plug is formed in the first via hole in the next process. The second pad electrode layer connected to the plug is disposed on the second insulating film. Next, the second via hole reaching to the first pad electrode layer from the backside of the semiconductor substrate is formed. The penetrating electrode and the second wiring layer connected to the first pad electrode layer at the bottom part of the second via hole are disposed. Furthermore, the protecting layer and the conductive terminal are formed. Finally, the semiconductor substrate is diced into the semiconductor chips.
摘要:
The invention is directed to improvement of reliability of a semiconductor device having penetrating electrodes by preventing a protection film and an insulation film peeling. A peeling prevention layer for preventing an insulation film and a protection layer peeling is formed in corner portions of the semiconductor device. The peeling prevention layer can increase its peeling prevention effect more when formed in a vacant space of the semiconductor device other than the corner portions, for example, between ball-shaped conductive terminals. In a cross section of the semiconductor device, the peeling prevention layer is formed on the insulation film on the back surface of the semiconductor substrate, and the protection layer formed of a solder resist or the like is formed covering the insulation film and the peeling prevention layer. The peeling prevention layer has a lamination structure of a barrier seed layer and a copper layer formed thereon when formed by an electrolytic plating method.
摘要:
A punch-through type IGBT generally has a thick p++-type collector layer. Therefore, the FWD need be externally attached to the IGBT when the IGBT is used as a switching element in an inverter circuit for driving a motor load, and thus the number of processes and components increases. In the invention, trenches are formed penetrating through a collector layer and reaching a buffer layer. A collector electrode is formed in the trenches, too. With this structure, a current path is formed between an emitter electrode and the collector electrode without through the collector layer and functions as the FWD.
摘要:
The invention is directed to improvement of reliability of a semiconductor device having penetrating electrodes by preventing a protection film and an insulation film peeling. A peeling prevention layer for preventing an insulation film and a protection layer peeling is formed in corner portions of the semiconductor device. The peeling prevention layer can increase its peeling prevention effect more when formed in a vacant space of the semiconductor device other than the corner portions, for example, between ball-shaped conductive terminals. In a cross section of the semiconductor device, the peeling prevention layer is formed on the insulation film on the back surface of the semiconductor substrate, and the protection layer formed of a solder resist or the like is formed covering the insulation film and the peeling prevention layer. The peeling prevention layer has a lamination structure of a barrier seed layer and a copper layer formed thereon when formed by an electrolytic plating method.
摘要:
The invention is directed to a semiconductor device having a penetrating electrode and a manufacturing method thereof in which reliability and a yield of the semiconductor device are enhanced. A semiconductor substrate is etched to form a via hole from a back surface of the semiconductor substrate to a pad electrode. This etching is performed under an etching condition such that an opening diameter of the via hole at its bottom is larger than a width of the pad electrode. Next, a second insulation film is formed on the back surface of the semiconductor substrate including in the via hole 16, exposing the pad electrode at the bottom of the via hole. Next, a penetrating electrode and a wiring layer are formed, being electrically connected with the pad electrode exposed at the bottom of the via hole 16. Furthermore, a protection layer and a conductive terminal are formed. Finally, the semiconductor substrate is cut and separated in semiconductor dies by dicing.
摘要:
A result of formation of an opening in a semiconductor substrate can be judged without cutting a semiconductor wafer and observing a cross-section of the cut wafer. A semiconductor device of this invention includes a semiconductor substrate, a pad electrode formed on the semiconductor substrate, an opening formed in the semiconductor substrate to expose the pad electrode, a wiring layer connected with the pad electrode through the opening and a monitoring opening formed in a scribe line to monitor a result of the formation of the opening.