摘要:
The present invention provides a substrate processing system, a control method for a substrate processing apparatus, and a program for the system and/or method, each of which is intended to achieve effective control for a film-forming amount on processed substrates. The substrate processing system includes a substrate processing unit adapted for forming a film on each of the plurality of substrates; a pattern obtaining unit adapted for obtaining information about an arrangement pattern concerning arrangement of unprocessed substrates and processed substrates among the plurality of substrates; and a memory unit adapted for storing therein an arrangement/film-forming-amount model indicative of influence exerted on the film-forming amount on the substrates by the arrangement of the unprocessed substrates and processed substrates among the plurality of substrates. A calculation unit calculates an estimated film-forming amount on the substrates, in the case of the arrangement pattern, based on the arrangement/film-forming-amount model. Then, a determination unit determines whether or not the estimated film-forming amount calculated by the calculation unit is within a predetermined range. If the estimated film-forming amount calculated by the calculation unit is determined to be within the predetermined range, a control unit will control and drive the substrate processing unit to process the substrates.
摘要:
The present invention provides a substrate processing system, a control method for a substrate processing apparatus, and a program for the system and/or method, each of which is intended to achieve effective control for a film-forming amount on processed substrates. The substrate processing system includes a substrate processing unit adapted for forming a film on each of the plurality of substrates; a pattern obtaining unit adapted for obtaining information about an arrangement pattern concerning arrangement of unprocessed substrates and processed substrates among the plurality of substrates; and a memory unit adapted for storing therein an arrangement/film-forming-amount model indicative of influence exerted on the film-forming amount on the substrates by the arrangement of the unprocessed substrates and processed substrates among the plurality of substrates. A calculation unit calculates an estimated film-forming amount on the substrates, in the case of the arrangement pattern, based on the arrangement/film-forming-amount model. Then, a determination unit determines whether or not the estimated film-forming amount calculated by the calculation unit is within a predetermined range. If the estimated film-forming amount calculated by the calculation unit is determined to be within the predetermined range, a control unit will control and drive the substrate processing unit to process the substrates.
摘要:
An area sensor of the present invention has a function of displaying an image in a sensor portion by using light-emitting elements and a reading function using photoelectric conversion devices. Therefore, an image read in the sensor portion can be displayed thereon without separately providing an electronic display on the area sensor. Furthermore, a photoelectric conversion layer of a photodiode according to the present invention is made of an amorphous silicon film and an N-type semiconductor layer and a P-type semiconductor layer are made of a polycrystalline silicon film. The amorphous silicon film is formed to be thicker than the polycrystalline silicon film. As a result, the photodiode according to the present invention can receive more light.
摘要:
The manufacturing method includes: forming a P-type silicon substrate and a high-concentration N-type diffusion layer, in which an N-type impurity is diffused in a first concentration, on an entire surface at a light-incident surface side; forming an etching resistance film on the high-concentration N-type diffusion layer and forming fine pores at a predetermined position within a recess forming regions on the etching resistance film; forming recesses by etching the silicon substrate around a forming position of the fine pores, so as not to leave the high-concentration N-type diffusion layer within the recess forming region; forming the low-concentration N-type diffusion layer, in which an N-type impurity is diffused in a second concentration that is lower than the first concentration, on a surface on which the recesses are formed; and forming a grid electrode in an electrode forming region at a light-incident surface side of the silicon substrate.
摘要:
An area sensor of the present invention has a function of displaying an image in a sensor portion by using light-emitting elements and a reading function using photoelectric conversion devices. Therefore, an image read in the sensor portion can be displayed thereon without separately providing an electronic display on the area sensor. Furthermore, a photoelectric conversion layer of a photodiode according to the present invention is made of an amorphous silicon film and an N-type semiconductor layer and a P-type semiconductor layer are made of a polycrystalline silicon film. The amorphous silicon film is formed to be thicker than the polycrystalline silicon film. As a result, the photodiode according to the present invention can receive more light.
摘要:
With a conventional cylindrical can method, a region used as a film formation ground electrode is a portion of the cylindrical can, and an apparatus becomes larger in size in proportion to the surface area of the electrode. A conveyor device and a film formation apparatus having the conveyor device are provided, which have a unit for continuously conveying a flexible substrate from one end to the other end, and which are characterized in that a plurality of cylindrical rollers are provided between the one end and the other end along an arc with a radius R, the cylindrical rollers being arranged such that their center axes run parallel to each other, and that a mechanism for conveying the flexible substrate while the substrate is in contact with each of the plurality of cylindrical rollers is provided.
摘要:
The number of masks is reduced in a method of manufacturing a semiconductor device that has a transistor and a photoelectric conversion element on an insulating surface. In a manufacturing method of the present invention, semiconductor layers functioning as a source region, a drain region, and a channel formation region of a transistor are formed at the same time an n type semiconductor layer and p type semiconductor layer of a photoelectric conversion element are formed. Connection wiring lines to be electrically connected to the n type semiconductor layer and p type semiconductor layer of the photoelectric conversion element are formed at the same time a source wiring line and a drain wiring line of a transistor are formed. In a doping step using an impurity element that gives one conductivity type, a semiconductor layer of an n-channel transistor and the n type semiconductor layer of the photoelectric conversion element are simultaneously doped with the impurity element and a semiconductor layer of a p-channel transistor and the p type semiconductor layer of the photoelectric conversion element are simultaneously doped with the impurity element.
摘要:
This invention discloses the method of forming silicon nitride, silicon oxynitride, silicon oxide, carbon-doped silicon nitride, carbon-doped silicon oxide and carbon-doped oxynitride films at low deposition temperatures. The silicon containing precursors used for the deposition are monochlorosilane (MCS) and monochloroalkylsilanes. The method is preferably carried out by using plasma enhanced atomic layer deposition, plasma enhanced chemical vapor deposition, and plasma enhanced cyclic chemical vapor deposition.
摘要:
An area sensor of the present invention has a function of displaying an image in a sensor portion by using light-emitting elements and a reading function using photoelectric conversion devices. Therefore, an image read in the sensor portion can be displayed thereon without separately providing an electronic display on the area sensor. Furthermore, a photoelectric conversion layer of a photodiode according to the present invention is made of an amorphous silicon film and an N-type semiconductor layer and a P-type semiconductor layer are made of a polycrystalline silicon film. The amorphous silicon film is formed to be thicker than the polycrystalline silicon film. As a result, the photodiode according to the present invention can receive more light.
摘要:
A laser-annealing method includes the steps of a first step of cleaning a non-monocrystal silicon film formed on a substrate, and a second step of laser-annealing the non-monocrystal silicon film in an atmosphere containing oxygen therein, wherein the first and second steps are conducted continuously without being exposed to the air. Also, a laser-annealing device includes a cleaning chamber, and a laser irradiation chamber, wherein a substrate to be processed is transported between the cleaning chamber and the laser irradiation chamber without being exposed to the air.