摘要:
There is provided a washing liquid composition for a semiconductor substrate having a contact angle between the surface thereof and water dropped thereon of at least 70 degrees, the washing liquid composition including an aliphatic polycarboxylic acid and a surfactant, and the washing liquid composition having a contact angle of at most 50 degrees when dropped on the semiconductor substrate. It is thereby possible to effectively remove particles and metals on the surface of a hydrophobic substrate without corroding it.
摘要:
A post-CMP washing liquid composition is provided which includes one type or two or more types of aliphatic polycarboxylic acids and one type or two or more types selected from the group consisting of glyoxylic acid, ascorbic acid, glucose, fructose, lactose, and mannose, and which has a pH of less than 3.0. This washing liquid has excellent performance in removing micro particles and metal impurities adhering to the surface of a semiconductor substrate after CMP and does not corrode a metal wiring material.
摘要:
A cleaning solution for semiconductor substrates comprising a nonionic surface active agent of the formula (1) and/or the formula (2), a chelating agent and a chelating accelerator: CH3—(CH2)l—O—(CmH2mO)n—X (1) wherein l, m and n independently represent a positive number, and X represents a hydrogen atom or a hydrocarbon group; CH3—(CH2)a—O—(CbH2bO)d—(CxH2xO)y—X (2) wherein a, b, d, x and y independently represent a positive number, b and x are different, and X represents a hydrogen atom or a hydrocarbon group.
摘要翻译:一种用于半导体衬底的清洁溶液,其包含式(1)和/或式(2)的非离子表面活性剂,螯合剂和螯合促进剂:<?in-line-formula description =“In-Line Formulas” 结束=“铅”→CH 3 - (CH 2) u> u> u> &lt; 2m&lt; O&lt; n&gt; -X(1)<?in-line-formula description =“In-line Formulas”end =“tail”?>其中l,m和 n独立地表示正数,X表示氢原子或烃基; <?in-line-formula description =“In-line Formulas”end =“lead”?> CH 3 - (CH 2) SUB> > - (C b H 2b)O - (C x H 2 H 2) 其中a,b,d,x和y分别代表一个或多个,其中a,b,d,x和y 独立地表示正数,b和x不同,X表示氢原子或烃基。
摘要:
A photoresist residue remover composition is provided that includes one type or two or more types of fluoride compound and one type or two or more types chosen from the group consisting of glyoxylic acid, ascorbic acid, glucose, fructose, lactose, and mannose (but excluding one that includes ammonium fluoride, a polar organic solvent, water, and ascorbic acid). There is also provided use of the photoresist residue remover composition for removing a photoresist residue and a sidewall polymer remaining after dry etching and after ashing.
摘要:
According to this invention, residues generated after selectively removing a low-dielectric-constant film such as SiOC can be effectively removed without damage on an insulating film or metal film. Specifically, residues 126 and 128 generated after forming an interconnect trench in an SiOC film 116 are removed using a fluoride-free weak alkaline amine stripper. After the removing step, the wafer is rinsed with isopropyl alcohol and then dried without drying with pure water.
摘要:
The stripping agent is sprayed from the tip of the nozzle 33 onto the wafer surface, while the first supply nozzle 33 is actuated to scan from the central portion of the wafer to the outer portion thereof. This operation provides the situation, in which the interface of the residual droplet 38 is pulled back from the center of the wafer to the outer portion of the wafer by the surface tension of the stripping agent supplied from the nozzle. Meanwhile, the second supply nozzle 36 also scans at a same scanning speed as the first supply nozzle 33 scans. Vapor IPA is sprayed from the orifice of the second supply nozzle 36. This provides that vapor IPA is sprayed onto the wafer surface immediately after the stripping agent is sprayed thereon from the first supply nozzle 33, and the residual stripping agent on the wafer surface is efficiently replaced with IPA.
摘要:
According to the present invention, high-k film can be etched to provide a desired geometry without damaging the silicon underlying material. A silicon oxide film 52 is formed on a silicon substrate 50 by thermal oxidation, and a high dielectric constant insulating film 54 comprising HfSiOx is formed thereon. Thereafter, polycrystalline silicon layer 56 and high dielectric constant insulating film 54 are selectively removed in stages by a dry etching through a mask of the resist layer 58, and subsequently, the residual portion of the high dielectric constant insulating film 54 and the silicon oxide film 52 are selectively removed by wet etching through a mask of polycrystalline silicon layer 56. A liquid mixture of phosphoric acid and sulfuric acid is employed for the etchant solution. The temperature of the etchant solution is preferably equal to or lower than 200 degree C., and more preferably equal to or less than 180 degree C.
摘要:
An oxide film formed on the surface of copper film of an electrode pad is cleaned by oxalic acid after unevenness is formed on the surface of copper film by treating the surface with organic acid. Thereby, stable resistance is obtained when carrying out a characteristic inspection by bringing a probe into contact with the electrode pad, and it is easily recognized by observation through a microscope that the probe is brought into contact with the electrode pad. In addition, wettability with respect to solder is satisfactory, and it is possible to favorably form a solder bump on the electrode pad.
摘要:
In order to provide a manufacturing method of a semiconductor device which can improve the interconnection lifetime, while controlling the increase in resistance thereof, and, in addition, can raise the manufacturing stability; by applying a plasma treatment to the surface of a copper interconnection 17 with a source gas comprising a nitrogen element being used, a copper nitride layer 24 is formed, and thereafter a silicon nitride film 18 is formed. Hereat, under the copper nitride layer 24, a thin copper silicide layer 25 is formed.
摘要:
A cleaning solution having an oxidation-reduction potential lower than that of pure water and a pH value of 4 or below is used to remove metal contamination, thereby efficiently removing the metal contamination adhered onto a surface of a substrate without damaging an underlayer.