摘要:
A method for forming a multi-layer silicon oxide film on a substrate includes performing a deposition cycle that comprises depositing a silicon oxide layer using a thermal chemical vapor deposition (CVD) process and depositing a silicon oxide layer using a plasma enhanced chemical vapor deposition (PECVD) process. The deposition cycle is repeated a specified number of times to form the multi-layer silicon oxide film comprising a plurality of silicon oxide layers formed using the thermal CVD process and a plurality of silicon oxide layers formed using the PECVD process. Each silicon oxide layer formed using the thermal CVD process is adjacent to at least one silicon oxide layer formed using the PECVD process.
摘要:
Methods for doping a non-planar structure by forming a conformal doped silicon glass layer on the non-planar structure are disclosed. A substrate having the non-planar structure formed thereon is positioned in chemical vapor deposition process chamber to deposit a conformal SACVD layer of doped glass (e.g. BSG or PSG). The substrate is then exposed to RTP or laser anneal step to diffuse the dopant into the non-planar structure and the doped glass layer is then removed by etching.
摘要:
Methods for doping a non-planar structure by forming a conformal doped silicon glass layer on the non-planar structure are disclosed. A substrate having the non-planar structure formed thereon is positioned in chemical vapor deposition process chamber to deposit a conformal SACVD layer of doped glass (e.g. BSG or PSG). The substrate is then exposed to RTP or laser anneal step to diffuse the dopant into the non-planar structure and the doped glass layer is then removed by etching.
摘要:
Methods of depositing silicon oxide layers on substrates involve flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that a uniform silicon oxide growth rate is achieved across the substrate surface. The surface of silicon oxide layers grown according to embodiments may have a reduced roughness when grown with the additive precursor. In other aspects of the disclosure, silicon oxide layers are deposited on a patterned substrate with trenches on the surface by flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that the trenches are filled with a reduced quantity and/or size of voids within the silicon oxide filler material.
摘要:
Methods of depositing silicon oxide layers on substrates involve flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that a uniform silicon oxide growth rate is achieved across the substrate surface. The surface of silicon oxide layers grown according to embodiments may have a reduced roughness when grown with the additive precursor. In other aspects of the disclosure, silicon oxide layers are deposited on a patterned substrate with trenches on the surface by flowing a silicon-containing precursor, an oxidizing gas, water and an additive precursor into a processing chamber such that the trenches are filled with a reduced quantity and/or size of voids within the silicon oxide filler material.
摘要:
A switching frame buffer is described in which data units within a sequence of time slots, of a frame, may be simultaneously input and output at ports of the switching frame buffer. In one implementation, a write port may receive data units within a single cycle of the switch. A number of memories may be provided, where first selected ones of the memories constitute memory groups and second selected ones of the memories constitute a memory subsets, each of the memory groups including a corresponding one of the memory subsets. The write port may supply each of a number of copies of the data units to a corresponding one of the memory subsets. Multiplexers may be associated with the groups of the memories and a read port may receive one of the copies of a number of the data units from different ones of the multiplexers.
摘要:
A substrate processing chamber for processing a plurality of wafers in batch mode. In one embodiment the chamber includes a vertically aligned housing having first and second processing areas separated by an internal divider, the first processing area positioned directly over the second processing area; a multi-zone heater operatively coupled to the housing to heat the first and second processing areas independent of each other; a wafer transport adapted to hold a plurality of wafers within the processing chamber and move vertically between the first and second processing areas; a gas distribution system adapted to introduce ozone into the second area and steam into the first processing area; and a gas exhaust system configured to exhaust gases introduced into the first and second processing areas.
摘要:
Aspects of the disclosure pertain to methods of preferentially filling narrow trenches with silicon oxide while not completely filling wider trenches and/or open areas. In embodiments, dielectric layers are deposited by flowing a silicon-containing precursor and ozone into a processing chamber such that a relatively dense first portion of a silicon oxide layer followed by a more porous (and more rapidly etched) second portion of the silicon oxide layer. Narrow trenches are filled with dense material whereas open areas are covered with a layer of dense material and more porous material. Dielectric material in wider trenches may be removed at this point with a wet etch while the dense material in narrow trenches is retained.
摘要:
Methods of forming a dielectric layer are described. The methods include the steps of mixing a silicon-containing precursor with a plasma effluent, and depositing a silicon-and-nitrogen-containing layer on a substrate. The silicon-and-nitrogen-containing layer is converted to a silicon-and-oxygen-containing layer by curing in an ozone-containing atmosphere in the same substrate processing region used for depositing the silicon-and-nitrogen-containing layer. Another silicon-and-nitrogen-containing layer may be deposited on the silicon-and-oxygen-containing layer and the stack of layers may again be cured in ozone all without removing the substrate from the substrate processing region. After an integral multiple of dep-cure cycles, the conversion of the stack of silicon-and-oxygen-containing layers may be annealed at a higher temperature in an oxygen-containing environment.
摘要:
A method of forming a silicon oxide layer is described. The method increases the oxygen content of a dielectric layer by curing the layer in a two-step ozone cure. The first step involves exposing the dielectric layer to ozone while the second step involves exposing the dielectric layer to ozone excited by a local plasma. This sequence can reduce or eliminate the need for a subsequent anneal following the cure step. The two-step ozone cures may be applied to silicon-and-nitrogen-containing film to convert the films to silicon oxide.