摘要:
Disclosed are embodiments of a circuit (e.g., an electrostatic discharge (ESD) circuit), a design methodology and a design system. In the circuit, an ESD device is wired to a first metal level (e.g., M1). An inductor is formed in a second metal level (e.g., M5) above the first metal level and is aligned over and electrically connected in parallel to the ESD device by a single vertical via stack. The inductor is configured to nullify, for a given application frequency, the capacitance value of the ESD device. The quality factor of the inductor is optimized by providing, on a third metal level (e.g., M3) between the second metal level and the first metal level, a shield to minimize inductive coupling. An opening in the shield allows the via stack to pass through, trading off Q factor reduction for size-scaling and ESD robustness improvements.
摘要:
Disclosed are embodiments of a circuit (e.g., an electrostatic discharge (ESD) circuit), a design methodology and a design system. In the circuit, an ESD device is wired to a first metal level (e.g., M1). An inductor is formed in a second metal level (e.g., M5) above the first metal level and is aligned over and electrically connected in parallel to the ESD device by a single vertical via stack. The inductor is configured to nullify, for a given application frequency, the capacitance value of the ESD device. The quality factor of the inductor is optimized by providing, on a third metal level (e.g., M3) between the second metal level and the first metal level, a shield to minimize inductive coupling. An opening in the shield allows the via stack to pass through, trading off Q factor reduction for size-scaling and ESD robustness improvements.
摘要:
Disclosed are embodiments of a circuit (e.g., an electrostatic discharge (ESD) circuit), a design methodology and a design system. In the circuit, an ESD device is wired to a first metal level (e.g., M1). An inductor is formed in a second metal level (e.g., M5) above the first metal level and is aligned over and electrically connected in parallel to the ESD device by a single vertical via stack. The inductor is configured to nullify, for a given application frequency, the capacitance value of the ESD device. The quality factor of the inductor is optimized by providing, on a third metal level (e.g., M3) between the second metal level and the first metal level, a shield to minimize inductive coupling. An opening in the shield allows the via stack to pass through, trading off Q factor reduction for size-scaling and ESD robustness improvements.
摘要:
Disclosed are embodiments of a circuit (e.g., an electrostatic discharge (ESD) circuit), a design methodology and a design system. In the circuit, an ESD device is wired to a first metal level (e.g., M1). An inductor is formed in a second metal level (e.g., M5) above the first metal level and is aligned over and electrically connected in parallel to the ESD device by a single vertical via stack. The inductor is configured to nullify, for a given application frequency, the capacitance value of the ESD device. The quality factor of the inductor is optimized by providing, on a third metal level (e.g., M3) between the second metal level and the first metal level, a shield to minimize inductive coupling. An opening in the shield allows the via stack to pass through, trading off Q factor reduction for size-scaling and ESD robustness improvements.
摘要:
Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
摘要:
A conductive light shield is formed over a first dielectric layer of a via level in a metal interconnect structure. The conductive light shield is covers a floating drain of an image sensor pixel cell. A second dielectric layer is formed over the conductive light shield and at least one via extending from a top surface of the second dielectric layer to a bottom surface of the first dielectric layer is formed in the metal interconnect structure. The conductive light shield may be formed within a contact level between a top surface of a semiconductor substrate and a first metal line level, or may be formed in any metal interconnect via level between two metal line levels. The inventive image sensor pixel cell is less prone to noise due to the blockage of light over the floating drain by the conductive light shield.
摘要:
A method of making a semiconductor structure includes forming at least a first trench and a second trench having different depths in a substrate, forming a capacitor in the first trench, and forming a via in the second trench. A semiconductor structure includes a capacitor arranged in a first trench formed in a substrate and a via arranged in a second trench formed in the substrate. The first and second trenches have different depths in the substrate.
摘要:
Terminal pads and methods of fabricating terminal pads. The methods including forming a conductive diffusion barrier under a conductive pad in or overlapped by a passivation layer comprised of multiple dielectric layers including diffusion barrier layers. The methods including forming the terminal pads subtractively or by a damascene process.
摘要:
A CMOS image sensor pixel includes a conductive light shield, which is located between a first dielectric layer and a second dielectric layer. At least one via extends from a top surface of the second dielectric layer to a bottom surface of the first dielectric layer is formed in the metal interconnect structure. The conductive light shield may be formed within a contact level between a top surface of a semiconductor substrate and a first metal line level, or may be formed in any metal interconnect via level between two metal line levels. The inventive CMOS image sensor pixel enables reduction of noise in the signal stored in the floating drain.
摘要:
A method for fabricating a low-value resistor such as a ballast resistor for bipolar junction transistors. The resistor may be fabricated using layers of appropriate sheet resistance so as to achieve low resistance values in a compact layout. The method may rely on layers already provided by a conventional CMOS process flow, such as contact plugs and fully silicided (FUSI) metal gates.