Abstract:
Optical bodies are described. In particular, optical bodies having a birefringent multilayer optical film and a continuous adhesive layer with a thickness less than 20 micrometers are described. Optical bodies described herein exhibit reduced occurrence and severity of a non-uniformity defect known as “orange peel.”
Abstract:
A film contains a β-1,3-glucan derivative obtained by introducing an acyl group into a β-1,3-glucan and at least one resin selected from the group consisting of a rosin-based resin, a terpene-based resin, and a petroleum-based resin. The acyl group is represented by RCO—, and the R is a hydrocarbon group having 1 or more and 5 or less carbon atoms. Parts by weight of the resin with respect to 100 parts by weight of the β-1,3-glucan derivative are 90 parts by weight or less. A pressure-sensitive adhesive tape includes the film and a pressure-sensitive adhesive layer.
Abstract:
An electrically conductive adhesive layer includes an adhesive material; a plurality of electrically conductive dendritic first particles dispersed in the adhesive material and having a cumulative 50% particle diameter D50 in a range from about 20 micrometers to about 40 micrometers; and a plurality of electrically conductive substantially planar second particles dispersed in the adhesive material and having a cumulative 50% particle diameter D50 in a range from about 40 micrometers to about 70 micrometers. The adhesive layer has an average thickness in a range from about 15 micrometers to about 35 micrometers, an electrical resistance in a thickness direction of less than about 30 milliohms, and a peel strength of at least 0.1 N/mm from a stainless steel surface after a dwell time of about 20 minutes at 22° C.
Abstract:
A temporary protective film for semiconductor sealing molding includes a support film and an adhesive layer provided on one surface or both surfaces of the support film and containing a resin and a silane coupling agent. The content of the silane coupling agent in the temporary protective film may be more than 5% by mass and less than or equal to 35% by mass with respect to the total mass of the resin.
Abstract:
As a semiconductor-related-member processing sheet which can stably achieve to enhance the removability of the semiconductor-related-member processing sheet and to suppress the reliability degradation of members comprising chips manufactured from a semiconductor-related member using the semiconductor-related-member processing sheet, there is provided a semiconductor-related-member processing sheet, comprising a base material and a pressure sensitive adhesive layer provided on or above one surface of the base material, wherein the pressure sensitive adhesive layer comprises one or more types of energy ray polymerizable compounds having an energy ray polymerizable functional group, wherein at least one type of the energy ray polymerizable compounds is a polymerizable branched polymer that is a polymer having a branched structure, wherein a contact angle on a measurement target surface is 40° or less when measured using a water droplet under an environment of 25° C. and a relative humidity of 50%.
Abstract:
An object of the present invention is to provide a hot melt adhesive being environmentally-friendly, having excellent adhesion property to various substrates such as paper substrate and polyolefin substrate, as well having excellent thermal stability. The present invention relates to a hot melt adhesive comprising: (A) a polar functional group-modified polymer, (B) an aliphatic polyester-based resin, (C) an olefin-based polymer, and (D) a tackifier resin.
Abstract:
A curable composition for use in wound care comprising, apportioned between at least one Part A and at least one Part B: one or more alkenyl-group containing polymers (i) having at least one alkenyl group or moiety per molecule, one or more SiH-containing polymers (ii) having at least one Si—H unit per molecule; and a catalyst (iii) for curing by addition of alkenyl-containing polymer (i) to SiH-containing polymer (ii), Part A and Part B independently having viscosity at 23° C. in the range 5-300 Pa·s, preferably 10-100 Pa s, at a shearing rate of 10 s−1, and when combined in one Part having cure time at 23° C. in the range from 0.5 min to 25 min, wherein when dispensed into a location about a wound dressing, said wound dressing overlying a wound site and skin thereabout, said dispensing being so as to intimately contact and overlie an edge of said dressing and skin about said edge, the composition cures in contact with said edge and skin at 32° C. to an elastomer exhibiting zero or low tack at a time in the range from 0.5 to less than 30 minutes, apparatus for use with said composition comprising dispensing apparatus or wound dressing, a kit comprising the same, and methods of dispensing and curing the same and of using the same in sealing a wound dressing and in treating a wound site of a human in need thereof.
Abstract:
Improved adhesive between a sheet material having a low free energy surface, such as a polyolefin, polystyrene, or polyethylene terephthalate film, is achieved by treating the film surface with a silane coupling agent that provides hydrolyzable groups on the surface of the film, and employing an adhesive composition comprising a polymer having reactive silyl groups (e.g., silyl-functionalized polyethers, polyurethanes and/or polyesters). Such improved sheet products can be advantageously employed as weather barriers for building construction applications, eliminating the need for, and disadvantages of, mechanical fasteners.
Abstract:
A functional mixture is provided that comprises at least one multi-functional Michael acceptor, at least one multi-functional Michael donor, and at least one weakly basic catalyst.
Abstract:
A bioadhesive composition formed by polymerizing a homogeneous aqueous reaction mixture comprising from about 5% to about 50%, by weight of the reaction mixture, of at least one ionic water soluble monomer, from about 10% to about 50%, by weight of the reaction mixture, of at least one plasticizer (other than water), up to about 50%, by weight of the reaction mixture, of at least one non ionic water soluble monomer, up to about 40%, by weight of the reaction mixture, of water, optionally as well as up to about 10%, by weight of the reaction mixture, of at least one surfactant and from about 1% to about 30%, by weight of the reaction mixture, of at least one hydrophobic monomer and/or polymer. An electrolyte may be present, to enhance electrical conductivity, e.g. for use in biomedical electrodes.