Abstract:
A method of forming and transferring shaped metallic interconnects, comprising providing a donor substrate comprising an array of metallic interconnects, using a laser system to prepare the metallic interconnects, forming shaped metallic interconnects, and transferring the shaped metallic interconnect to an electrical device. An electronic device made from the method of providing a donor ribbon, wherein the donor ribbon comprises an array of metal structures and a release layer on a donor substrate, providing a stencil to the metal structures on the donor substrate, applying a laser pulse through the donor substrate to the metal structures, and directing the metal structures to an electronic device.
Abstract:
A method of making a semiconductor device can comprise forming a copper bond pad on an integrated circuit device; forming a first passivation layer on the integrated circuit device and the copper bond pad; forming a second passivation layer on the first passivation layer; forming a mask over the first and second passivation layers around the copper bond pad; etching the second passivation layer over the copper bond pad; and cleaning the first passivation layer over the copper bond pad. At least a portion of the first passivation layer remains over the copper bond pad after the etching the second passivation layer. A thickness of the first passivation layer over the copper bond pad is selected to protect the copper bond pad from oxidation and to allow wire bonding to the copper bond pad through the first passivation layer.
Abstract:
A device includes a tube extending in a longitudinal direction and a hollow channel arranged in the tube. An end part of the tube is formed such that first electromagnetic radiation paths extending in the tube and outside of the hollow channel in the longitudinal direction are focused in a first focus.
Abstract:
The invention provides methods and systems for laser assisted wirebonding. One or more conditioning laser pulses are used to prepare a bonding surface for wirebonding by removing impurities such as residues from manufacturing processes, oxides, or irregularities on the bonding surface. Subsequently, a free air ball is brought into contact with the conditioned bonding surface to form a weld.
Abstract:
An electronic device made from the method of providing a donor substrate comprising an array of metallic interconnects, using a laser system to prepare the metallic interconnects, forming shaped metallic interconnects, laser bending the shaped metallic interconnects; and transferring the shaped metallic interconnects onto a receiving substrate or device.
Abstract:
A method of forming and transferring shaped metallic interconnects, comprising providing a donor substrate comprising an array of metallic interconnects, using a laser system to prepare the metallic interconnects, forming shaped metallic interconnects, and transferring the shaped metallic interconnect to an electrical device. An electronic device made from the method of providing a donor ribbon, wherein the donor ribbon comprises an array of metal structures and a release layer on a donor substrate, providing a stencil to the metal structures on the donor substrate, applying a laser pulse through the donor substrate to the metal structures, and directing the metal structures to an electronic device.
Abstract:
A method of forming and transferring shaped metallic interconnects, comprising providing a donor substrate comprising an array of metallic interconnects, using a laser system to prepare the metallic interconnects, forming shaped metallic interconnects, and transferring the shaped metallic interconnect to an electrical device. An electronic device made from the method of providing a donor ribbon, wherein the donor ribbon comprises an array of metal structures and a release layer on a donor substrate, providing a stencil to the metal structures on the donor substrate, applying a laser pulse through the donor substrate to the metal structures, and directing the metal structures to an electronic device.
Abstract:
The invention provides methods and systems for laser assisted wirebonding. One or more conditioning laser pulses are used to prepare a bonding surface for wirebonding by removing impurities such as residues from manufacturing processes, oxides, or irregularities on the bonding surface. Subsequently, a free air ball is brought into contact with the conditioned bonding surface to form a weld.
Abstract:
The invention provides methods and systems for laser assisted wirebonding. One or more conditioning laser pulses are used to prepare a bonding surface for wirebonding by removing impurities such as residues from manufacturing processes, oxides, or irregularities on the bonding surface. Subsequently, a free air ball is brought into contact with the conditioned bonding surface to form a weld.
Abstract:
A method of forming and transferring shaped metallic interconnects, comprising providing a donor substrate comprising an array of metallic interconnects, using a laser system to prepare the metallic interconnects, forming shaped metallic interconnects, and transferring the shaped metallic interconnect to an electrical device. An electronic device made from the method of providing a donor ribbon, wherein the donor ribbon comprises an array of metal structures and a release layer on a donor substrate, providing a stencil to the metal structures on the donor substrate, applying a laser pulse through the donor substrate to the metal structures, and directing the metal structures to an electronic device.