Abstract:
Provided is a lubricating oil composition including a lubricating oil additive and a lubricating oil, the lubricating oil additive having nanodiamonds, of which a surface is hydrophobically modified by a surface treatment, dispersed in a base oil. The lubricating oil composition retains dispersibility over a long period of time and thus can ensure storage stability. Machines to which the lubricating oil composition is applied may have improved abrasion resistance as well as improved fuel consumption and reduced noise, and high thermal conductivity of the lubricating oil composition may also increase cooling efficiency and the service life of machines.
Abstract:
Provided is a lubricating oil composition including a lubricating oil additive and a lubricating oil, the lubricating oil additive having nanodiamonds, of which a surface is hydrophobically modified by a surface treatment, dispersed in a base oil. The lubricating oil composition retains dispersibility over a long period of time and thus can ensure storage stability. Machines to which the lubricating oil composition is applied may have improved abrasion resistance as well as improved fuel consumption and reduced noise, and high thermal conductivity of the lubricating oil composition may also increase cooling efficiency and the service life of machines.
Abstract:
Disclosed is a metalworking oil composition containing: at least one base oil (A) selected from a mineral oil and a synthetic oil; sulfurized oils and fats (B) having a kinematic viscosity at 40° C. of 60 mm2/s or more and 1,600 mm2/s or less; and a polymer (C) of an unsaturated fatty acid having a carbon number of 10 or more.
Abstract:
A process for reacting certain carboxylic reactants and at least one aldehyde or ketone with olefinic compounds then reacting the product prepared thereby with ammonia, a hydrazine or an amine, products prepared thereby and, additive concentrates, lubricating oil and fuel compositions.
Abstract:
Oil-soluble dispersant additives are disclosed. The additives comprise the reaction product of a functionalized 1-butene copolymer and at least one nucleophilic reactant selected from amines, amino alcohols, alcohols, and reactive metal compounds. The functionalized copolymer has within its structure at least one acyl functional group selected from the group consisting of C.sub.4 to C.sub.10 dicarboxylic acids and derivatives thereof and C.sub.3 to C.sub.10 monocarboxylic acids and derivatives thereof. The 1-butene copolymer is derived from 1-butene and at least one other .alpha.-olefin of formula CH.sub.2 .dbd.CHR', wherein R' is methyl or a C.sub.3 to C.sub.12 linear or branched alkyl group. The copolymer has a number average molecular weight of at least about 700, a molecular weight distribution of less than 5, and ethenylidene groups terminating at least about 30% of all polymer chains. The dispersant additives are useful in oleaginous compositions including lubricating oil compositions and concentrates and fuel compositions.
Abstract:
Formulations using tartaric compounds of the present invention in a low sulfur, low ash and low phosphorous lubricant lower wear, and friction and improves fuel economy.
Abstract:
Soot induced kinematic viscosity increase of lubricating oil compositions for diesel engines equipped with EGR systems can be ameliorated by selection of viscosity modifier, lubricating oil flow improvers, detergents and/or dispersants.
Abstract:
A turbo oil possessing improved rust inhibiting properties is provided by adding to the turbo oil base stock minor amounts of monobasic aminophosphates and dicarboxylic acids. The use of the recited combination produces unexpected superior rust resistance performance as compared to use of the individual components. The turbo oil benefitted by the additive is preferably a polyol ester-based oil.