摘要:
In a method for producing nanoparticles of copper selenide, a flowable copper precursor is formed by combining a copper starting material and a ligand, and a flowable selenium precursor is formed by suspending a selenium starting material in a liquid. Then a flowable copper-selenium mixture including a lower-polarity solvent is formed by combining the flowable copper precursor and the flowable selenium precursor. The flowable copper-selenium mixture is conducted through at least one heating unit, and the nanoparticles of copper selenide are isolated in an oxygen-depleted environment. The isolation includes combining a solution containing the nanoparticles of copper selenide and a deoxygenated, higher-polarity solvent to precipitate the nanoparticles.
摘要:
Provided are a high resistance CdTe-based compound single crystal with miniaturized Te precipitates and a method for producing the same. According to one embodiment of the present invention, a CdTe based compound single crystal is provided including a precipitate having a particle size of less than 0.1 μm obtained from an analysis by a light scattering tomography method. In the CdTe based compound single crystal, resistivity may be 1×107 Ωcm or more. In addition, in the CdTe based compound single crystal, a precipitate having a particle size of 0.1 μm or more obtained from the analysis by the light scattering tomography method is not detected. In the CdTe based compound single crystal, the precipitate may be a Te precipitate.
摘要:
The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one reactive diluent, at least one anaerobic stabilizer, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.
摘要:
According to example embodiments, a transparent electrically conductive film including a compound that has a two-dimensional electron gas layer, and has a product of an absorption coefficient (α) for light having a wavelength of about 550 nm at 25° C. and a resistivity value (ρ) thereof of less than or equal to about 30 Ω/sq is provided. The electrically conductive film may be a layered crystal structure of the compound.
摘要:
The present invention provides a heat treatment method, particularly a heat treatment method in which a protective layer is directly applied onto a precursor to ensure that the precursor on each portion of the substrate is treated based on substantially the same conditions so that the quality of the prepared product layer is improved. The method of the present invention comprises: (1) providing a substrate; (2) applying a precursor onto the surface of the substrate; (3) covering the precursor-applied substrate with a protective layer to bring the substrate and the protective layer into direct contact; (4) placing the substrate obtained from step (3) into a heat chamber for heat treatment; and (5) removing the protective layer. A product prepared by said heat treatment method is also provided.
摘要:
The present disclosure provides methods of preparing heterostructures of two or more transition metal dichalcogenides on a surface in a pattern in which the method does not require a mask or blocking agent to create a pattern on the surface. Also provided herein are ink compositions which are used in the methods described herein and include precursor materials that generate these transition metal dichalcogenides.
摘要:
An object of the present invention is to provide a novel sulfur-based positive electrode active material for a lithium-ion secondary battery which is excellent in cyclability and can largely improve a charging and discharging capacity, a positive electrode comprising the positive electrode active material and a lithium-ion secondary battery made using the positive electrode. The sulfur-based positive electrode active material is obtainable by subjecting a starting material comprising a polymer, sulfur and an organometallic compound dispersed in a form of fine particles to heat-treatment under a non-oxidizing atmosphere, wherein the particles of metallic sulfide resulting from sulfurization of the organometallic compound are dispersed in the heat-treated material, and particle size of the metallic sulfide particles is not less than 10 nm and less than 100 nm.
摘要:
Reagent complexes have two or more elements, formally in oxidation state zero, complexed with a hydride molecule. Complexation with the hydride molecule may be evidenced by shifts to lower binding energies, of one or more electrons in each of the two or more elements, as observed by x-ray photoelectron spectroscopy. The reagents can be useful for the synthesis of multi-element nanoparticles. Preparation of the reagents can be achieved by ball-milling a mixture that includes powders of two or more elements and a hydride molecule.
摘要:
A process that allows convenient production of multifunctional composite particles by direct self-assembly of hydrophobic nanoparticles on host nanostructures containing high density surface thiol groups is present. Hydrophobic nanoparticles of various compositions and combinations can be directly assembled onto the host surface through the strong coordination interactions between metal cations and thiol groups. The resulting structures can be further conveniently overcoated with a layer of normal silica to stabilize the assemblies and render them highly dispersible in water for biomedical applications. As the entire fabrication process does not involve complicated surface modification procedures, the hydrophobic ligands on the nanoparticles are not disturbed significantly so that they retain their original properties such as highly efficient luminescence. Multifunctional nonspherical nanostructures can be produced by using mercapto-silica coated nano-objects of arbitrary shapes as hosts for immobilizing functional nanoparticles. Multilayer structures can be achieved by repeating the mercapto-silica coating and nanoparticle immobilization processes.
摘要:
A facile room-temperature method for assembling colloidal copper sulfide (Cu2-xS) nanoparticles into highly electrically conducting calcogenide material layer films utilizes ammonium sulfide for connecting the nanoparticles, while simultaneously effecting templating surfactant ligand removal. The foregoing process steps transform an as-deposited insulating films into a highly conducting films (i.e., having a conductivity at least about 75 S·cm−1). The methodology is anticipated as applicable to copper chalcogenides other than copper sulfide, as well as metal chalcogenides other than copper chalcogenides. The comparatively high conductivities reported are attributed to better interparticle coupling through the ammonium sulfide treatment. This approach presents a scalable room temperature route for fabricating comparatively highly conducting nanoparticle assemblies for large area electronic and optoelectronic applications.