Abstract:
Die Erfindung betrifft ein Verfahren zum Aufbringen und elektrischen Kontaktieren von ersten elektronischen Bauteilen (31) auf eine sich fortbewegende Substratbahn (20), wobei in einem Schritt (26) die ersten Bauteile (31) hintereinander, mindestens einreihig, der Substratbahn (20) zugeführt werden, und in einem weiteren Schritt (32, 35) auf den ersten elektronisehen Bauteilen (31) angeordnete erste Kontaktanschlussflächen mit daneben auf der Substratbahn (20) angeordneten zweiten Kontaktanschlussflächen (23) zweiter Bauteile elektrisch verbunden werden, wobei: die Substratbahn (20) sich kontinuierlich fortbewegt (24), während das erste elektronische Bauteil (31) von einer Zuführeinheit (25, 27) kommend, frei fallend auf einer vorbestimmten Position an einer Oberfläche der Substratbahn (20) auftrifft, die Ausrichtung der positionierten ersten Bauteile (31) relativ zu den zweiten Kontaktanschlussflächen (23) mittels einer optischen Messeinrichtung (29) vermessen werden (30), aus den daraus resultierenden Messergebnissen vorzubestimmende Positionen von elektrisch leitfähigen Verbindungswegen (33a, 33b; 34a, 34b) zwischen den ersten und den ihnen zugeordneten zweiten Kontaktanschlussflächen (23) berechnet werden, und die elektrisch leitfähigen Verbindungswege (33a, 33b; 34a, 34b) mittels mindestens einer gegenüber den Kontaktanschlussflächen (23) beabstandeten ein Leitfluid auftragende Auftrageeinheit (32a) erzeugt werden (32), wobei die Zuführeinheit (26) die Messeinrichtung (29) und die Auftrageeinheit (32a) während des gesamten Verfahrensablaufes die Substratbahn (20), die Bauteile (31) und die Kontaktanschlussflächen (23) nicht berühren.
Abstract:
Apparatuses and methods for forming displays are claimed. One embodiment of the invention relates to depositing a plurality of blocks onto a substrate and is coupled to a flexible layer having interconnect deposited thereon. Another embodiment of the invention relates to forming a display along a length of a flexible layer wherein a slurry containing a plurality of elements with circuit elements thereon washes over the flexible layer and slides into recessed regions or holes found in the flexible layer. Interconnect is then deposited thereon. In another embodiment, interconnect is placed on the flexible layer followed by a slurry containing a plurality of elements.
Abstract:
A method for assembling a device. The method comprises placing a functional element in a first opening formed in a template substrate and transferring the functional element to a device substrate having a second opening formed therein wherein the functional element is held within the second opening and against an adhesive film coupled to the device substrate.
Abstract:
The connections of an electronic device (1) comprise at least an input/output interface element and at least an electronic component (8) such as a chip, with at least a contact pad and rear surface fixed on the support. The process consists in: placing in position the insulating member (17), whether cut out or not; cutting out reserves (20) for access to the contact pad and the corresponding interface element (3); deforming the insulating member (17); activating the adhesive properties of the insulating member (17); and printing the conduction weld (19) through the reserves.
Abstract:
A flexible display device has one or more flexible electrode assemblies. Each of the electrode assemblies includes a hierarchical control arrangement for selectively activating electrodes of the display device. The hierarchical control arrangement includes high-level control elements and low-level control elements, each of the high-level control elements being operatively coupled to respective subsets of the low-level control elements, which in turn are coupled to respective groups of the electrodes. Exemplary control elements are microstructure elements containing imbedded microprocessors or integratred circuits. The use of a hierarchical control arrangment results in data signals having to pass through fewer control elements when compared with single-level arrangements. This increases operation speed and reduces power losses due to voltage drops across control elements. In addition, the number of connections to device(s) external to the display may thereby be reduced.
Abstract:
An RFID device. The device comprises a conductive layer formed on a first substrate. An opening line (or two or more opening lines) is formed in the conductive layer to make the conductive layer a part of an antenna structure. An integrated circuit chip is placed over at least a portion the opening line and coupled to the conductive layer. The integrated circuit chip is electrically interconnected to the conductive layer.
Abstract:
A flexible display device has one or more flexible electrode assemblies. Each of the electrode assemblies includes a hierarchical control arrangement for selectively activating electrodes of the display device. The hierarchical control arrangement includes high-level control elements and low-level control elements, each of the high-level control elements being operatively coupled to respective subsets of the low-level control elements, which in turn are coupled to respective groups of the electrodes. Exemplary control elements are microstructure elements containing imbedded microprocessors or integratred circuits. The use of a hierarchical control arrangment results in data signals having to pass through fewer control elements when compared with single-level arrangements. This increases operation speed and reduces power losses due to voltage drops across control elements. In addition, the number of connections to device(s) external to the display may thereby be reduced.
Abstract:
A substrate having embossed thereon a plurality of shaped recesses of a predetermined precise geometric profile, each recess having a flat bottom surface having a major dimension of about 500 mu or less, the substrate being capable of undergoing a thermal cycle of about one hour at about 150 DEG C while maintaining about +/- 10 mu or less dimensional stability of the embossed shaped indentations, and wherein the substrate comprises an amorphous thermoplastic material. During the thermal cycle the substrate has an elastic modulus greater than about 10 dynes/cm and a viscoelastic index of less than about 0.1.
Abstract translation:具有在其上压印有多个具有预定精确几何轮廓的成形凹槽的基底,每个凹部具有平坦的底部表面,其主要尺寸为约500μm或更小,所述基底能够在约约1小时的时间内进行约1小时的热循环 150℃,同时保持压花形凹陷的大约+/- 10微米或更小的尺寸稳定性,并且其中所述基底包括非晶态热塑性材料。 在热循环期间,基材的弹性模量大于约10 10达因/ cm 2,粘弹性指数小于约0.1。
Abstract:
A flexible display device has one or more flexible electrode assemblies. Each of the electrode assemblies includes a hierarchical control arrangement for selectively activating electrodes of the display device. The hierarchical control arrangement includes high-level control elements and low-level control elements, each of the high-level control elements being operatively coupled to respective subsets of the low-level control elements, which in turn are coupled to respective groups of the electrodes. Exemplary control elements are microstructure elements containing imbedded microprocessors or integrated circuits. The use of a hierarchical control arrangement results in data signals having to pass through fewer control elements when compared with single-level arrangements. This increases operation speed and reduces power losses due to voltage drops across control elements. In addition, the number of connections to device(s) external to the display may thereby be reduced.
Abstract:
Exemplary embodiments provide methods and systems for assembling electronic devices, such as integrated circuit (IC) chips, by selectively and scalably embedding or seating IC elements onto/into a receiving substrate, such as a chip substrate. Preparing of the chip substrate can be performed by depositing or patterning an activatable thermal barrier material on a surface of the substrate. The IC chips are secured on the prepared substrate by activating the thermal barrier material between the chip substrate and IC chips. Securing can include softening of the chip substrate with the activated thermal barrier material to an amount suitable for embedding the IC chips. Securing can also include adhesively bonding the IC chips to the substrate with the activated thermal barrier material in the case of a non-pliable substrate.