摘要:
An electrical connector includes an upper stanchion forming a first end of the electrical connector, a planar welding tab forming a second end of the electrical connector that is opposite the first end, a meander arranged between the planar welding tab and the upper stanchion, and an opening in the meander, wherein the first and second ends of the electrical connector are vertically spaced apart from one another in a vertical direction that is orthogonal to a plane of the planar welding tab, wherein the meander is meandered relative to the vertical direction, wherein the meander and the planar welding tab each extend laterally away from the upper stanchion in the same direction, and wherein an area of the welding tab that is within an outer lateral reach of the meander is exposed from above by the opening.
摘要:
A method of the invention includes reducing stiction of a MEMS device by providing a conductive path for electric charge collected on a bump stop formed on a substrate. The bump stop is formed by depositing and patterning a dielectric material on the substrate, and the conductive path is provided by a conductive layer deposited on the bump stop. The conductive layer can also be roughened to reduce stiction.
摘要:
Sought is to provide a semiconductor module that makes it possible to easily perform visual observation of soldering, and to perform a reflow soldering process in a state where external terminals are attached to a case. A semiconductor module includes a rectangular base plate; a substrate which is placed on the base plate and on which a circuit including a semiconductor chip and so forth is formed; a rectangular parallelepiped case made of resin that is attached to the base plate and houses the substrate within; and a plurality of external terminals lower ends of which are fixed to the substrate with upper ends thereof being exposed on a top face of the case. The case is provided with a first case opening portion and a second case opening portion that are respectively formed by cutting off a front face and a rear face of the case from an upper edge thereof along a longitudinal direction thereof; and the top face of the case between the first case opening portion and the second case opening portion includes an external terminal holding portion to hold the plurality of external terminals along the longitudinal direction with the upper ends thereof being exposed. A sealing material is injected from the first case opening portion and the second case opening portion onto a top face of the substrate, and thereby the semiconductor module is sealed.
摘要:
Some embodiments of the present disclosure describe an integrated circuit (IC) package assembly having first, second, and third insulated wires wire bonded with die pads on an IC die, with an outer surface of the second insulated wire located at a distance of less than an outer cross-sectional diameter of the second insulated wire from an outer surface of the first insulated wire at a first location and located at a distance of less than the outer cross-sectional diameter from an outer surface of the third insulated wire at a second location. Other embodiments may be described and/or claimed.
摘要:
A semiconductor die is described. This semiconductor die includes a driver, and a spatial alignment transducer that is electrically coupled to the driver and which is proximate to a surface of the semiconductor die. The driver establishes a spatially varying electric charge distribution in at least one direction in the spatial alignment transducer, thereby facilitating determination of a vertical spacing between a surface of the semiconductor die and a surface of another semiconductor die. In particular, a spatial alignment sensor proximate to the surface of the other semiconductor die may detect an electrical field (or an associated electrostatic potential) associated with the spatially varying electric charge distribution. This detected electric field may allow the vertical spacing between the surfaces of the semiconductor dies to be determined.
摘要:
An apparatus including a die including a plurality of through silicon vias (TSV's) extending from a device side to a backside of the die; and a decoupling capacitor coupled to the TSV's. A method including providing a die including a plurality of through silicon vias (TSV's) extending from a device side to a backside of the die; coupling a decoupling capacitor to the backside of the die. An apparatus including a computing device including a package including a microprocessor including a device side and a backside with through silicon vias (TSV's) extending from the device side to the backside, and a decoupling capacitor coupled to the backside of the die; and a printed circuit board, wherein the package is coupled to the printed circuit board.
摘要:
A semiconductor module is provided with a conductive member having one end, in a longitudinal direction, joined to an electrode of a semiconductor element that is mounted on an insulating substrate, the other end of the conductive member in the longitudinal direction being joined to a component different from the electrode. The conductive member is made up of a metal sheet, and has a bent portion at the one end and at the other end. The bent portion provided at the one end has a cut in a leading end portion, in the longitudinal direction, and an end joining section at which the cut is not present is joined to the electrode of the semiconductor element. As a result, a semiconductor module can be realized that allows combination of increased current capacity with improved reliability.
摘要:
Some example forms relate a method of fabricating an electronic package. The method includes attaching a source wafer that includes micro devices to a target wafer. The method further includes removing a portion of the source wafer from the target wafer to form an electronic package. The micro devices remain on the target wafer when the source wafer is removed from target wafer. The method may further include performing post processing on the electronic package that is formed after the source wafer is removed from the target wafer. In some forms of the method, some of the micro devices remain on the source wafer when the source wafer is removed from target wafer.
摘要:
[Problem] An object of the present invention is to provide an electronic part mounting heat-dissipating substrate which enables a circuit for which a power semiconductor in which a large current flows is used to reduce the wiring resistances of a large power operation and improve the heat dissipation. [Means for Solving] The present invention is an electronic part mounting heat-dissipating substrate which comprises: a conductor plate which is formed on lead frames of wiring pattern shapes; and an insulating member which is provided between the lead frames of the wiring pattern shapes on the conductor plate; wherein a plate surface of a part arrangement surface of the conductor plate and a top surface of the insulating member at a side of the part arrangement surface form one continuous surface, wherein a plate surface of a back surface of the part arrangement surface of the conductor plate and a top surface of the insulating member at a side of the back surface at the part arrangement surface-side are formed in an identical plane, wherein the substrate is formed in a circular shape