Abstract:
An immobilizing device for biological material comprises a rigid support (12) carrying a substrate layer (20, 20′) of polymer having biological immobilizing properties, e.g. for amino and nucleic acids. Substantially solid ultra-thin substrate layers (20′) having a thickness less than about 5 micron, preferably between about 0.1 and 0.5 micron, and microporous, ultra-thin substrate layers (20′) having a thickness less than about 5 micron, preferably less than 3 micron, 2 or 1 micron are shown, which may be segmented by isolating moats M. The substrate layer is on a microscope slide (302), round disc (122), bio-cassette, at the bottom of a well of a multiwell plate, and as a coating inside a tube. Fluorescence or luminescence intensity and geometric calibration spots (420) are shown. Reading is enhanced by the intensity calibration spots (420) to enable normalization of readings under uneven illumination conditions, as when reading by dark field, side illumination mode. The reference spots are shown being printed simultaneously with printing an array of biological spots or with the same equipment. Methods of forming layers of the device include controlled drawing from a bath of coating composition and drying, and spinning of C-D shaped substrates. Post-forming treatment is shown by corona treatment and radiation. Adherent metal oxides (14), silica-based materials and other materials are used to unite layers of the composite. In multiwell plates the oxide promotes joining of a bottom plate (95, 95′) and upper, well-defining structure (94) of dissimilar material. The oxides (14) also provide beneficial opacity to prevent light entering the glass support, for applying potential to the substrate, etc.
Abstract:
Methods and apparatus for depositing a high density biological or chemical array onto a solid support. Specifically, the apparatus is made up of a plurality of open ended channels collectively forming a matrix. The matrix has been redrawn and cut such that the pitch of the channels on the loading end is larger than the pitch of the channels on the liquid delivery end. The upper portion of each channel serves as a reservoir, while the opposing end, which has been formed by the redrawing process, is diametrically sized such that liquid in the reservoir is retained by capillary pressure at the delivery end. At any point along the height of the capillary reservoir device, all cross-sectional dimensions and areas are uniformly reduced. In other words, the on-center orientation of any two channels, also referred to as the pitch between 2 channels, measured as a function of the diameter of any cross section, is constant throughout the structure. The liquid within the channels is either printed directly from the tool onto a substrate or transferred to a substrate by a typographical pin plate. In another embodiment, the device may be used in transferring sample between multiwell plates of different well density.
Abstract:
Methods and apparatus for depositing a high density biological or chemical array onto a solid support. Specifically, the apparatus is made up of a plurality of open ended channels collectively forming a matrix. The matrix has been redrawn and cut such that the pitch of the channels on the loading end is larger than the pitch of the channels on the liquid delivery end. The upper portion of each channel serves as a reservoir, while the opposing end, which has been formed by the redrawing process, is diametrically sized such that liquid in the reservoir is retained by capillary pressure at the delivery end. At any point along the height of the capillary reservoir device, all cross-sectional dimensions and areas are uniformly reduced. In other words, the on-center orientation of any two channels, also referred to as the pitch between 2 channels, measured as a function of the diameter of any cross section, is constant throughout the structure. The liquid within the channels is either printed directly from the tool onto a substrate or transferred to a substrate by a typographical pin plate. In another embodiment, the device may be used in transferring sample between multiwell plates of different well density.
Abstract:
A filter strip and composite assemblies for filtering microliter quantities of fluids. A linear array of wells having open top and bottom ends are connected by frangible webs in spaced-apart relation with discrete filter membranes closing the bottom ends of each well. Tabs are provided on the ends of the filter strip for holding the same and supporting the strip in a rectangular holder having alpha-numeric designations for identifying each well in a plurality of such filter strips contained within the holder. The filter strip may be used in a vacuum manifold for applying a pressure differential across the filter membrane and directing the filtrate into an aligned aperture of a closed bottom well of an array of wells held within the manifold. Alternatively, the filter strip may be used with a transfer plate for directing the filtrate from each well of the filter strip to an aligned well of a closed bottom array of wells. Another composite assembly includes a pressure manifold for applying an increased pressure above the membranes.
Abstract:
A device and methods for performing biological or chemical analysis is provided. The device includes an array of three-dimensional microcolumns projecting away from a support plate. Each microcolumn has a relatively planar, first surface remote from the support plate. An array of multiple, different biological materials may be attached to the first surface. The device, when used in combination with existent micro-titer well plates, can improve efficiency of binding assays using microarrays for high-throughput capacity.
Abstract:
Described herein is a method of cloning synthetic oligos (including in situ synthesized oligos) into an (one or more) expression vector for library (e.g., shRNA library) production. The oligos are synthesized with one portion of the first stem of the hairpin, followed by a first loop sequence, the complete second stem, a second loop sequence, and finished with the remaining portion of the first stem of the hairpin. The two portions of the first stem anneal to the second stem, juxtaposing the 5′ end close to the 3′ end of the oligo. The methods described herein selected for hairpins with perfectly base-paired stems. After annealing, a ligase is added to the annealed oligos and the base-paired hairpins are preferentially annealed, and ligated, creating closed circular oligos. The now circularized hairpins served as templates for rolling circle amplification using a polymerase with high processivity. One or more primers complementary to the two strands of the amplified double stranded circular hairpins initiate the rolling circle amplification in the presence of a polymerase. Using primers (e.g., a sense and antisense primer), the rolling circle amplification yields double stranded hairpin sequences. These can be digested (e.g., using restriction enzymes) to produce a double-stranded hairpin fragment encoding a single hairpin. The fragment can be cloned into an appropriately digested vector for a variety of uses including expression.
Abstract:
A method of manufacture and assembly of multiwell plates employing targeted radiation at an interface in order to achieve bonding is disclosed. The method accommodates glass and polymer attachment as well as polymer to polymer attachment. Resultant plates have unique flatness and optical properties.
Abstract:
Methods and apparatus for depositing a high density biological or chemical array onto a solid support. Specifically, the apparatus is made up of a plurality of open ended channels collectively forming a matrix. The matrix has been redrawn and cut such that the pitch of the channels on the loading end is larger than the pitch of the channels on the liquid delivery end. The upper portion of each channel serves as a reservoir, while the opposing end, which has been formed by the redrawing process, is diametrically sized such that liquid in the reservoir is retained by capillary pressure at the delivery end. At any point along the height of the capillary reservoir device, all cross-sectional dimensions and areas are uniformly reduced. In other words, the on-center orientation of any two channels, also referred to as the pitch between 2 channels, measured as a function of the diameter of any cross section, is constant throughout the structure. The liquid within the channels is either printed directly from the tool onto a substrate or transferred to a substrate by a typographical pin plate. In another embodiment, the device may be used in transferring sample between multiwell plates of different well density.
Abstract:
A tissue or cell growth device is described for placement within a well of a cluster dish. The device has a cell or tissue retention element detachably attached to a hanger. The hanger preferably has openings allowing access to the well without removal of the member and is capable of positioning the cell or tissue retention element a preselected distance relative to the hanger. Also described are various embodiments of the device having differently shaped hangers and the combination of the device and a cluster dish.
Abstract:
Apparatus for growing tissue cultures in vitro, which permits a concentration gradient of nutrients to develop through a permeable membrane to which a sample of tissue is attached. The permeable membrane is attached to the bottom end of a tubular support that in turn hangs by a flange connected to its upper end on the top of a well containing the nutrients. Typically, the well is part of a tissue culture cluster dish. The flange of the support positions the support and membrane centrally in the well so as to avoid capillary action in the space between the well and support. The configuration of the support and its cooperation with the lid of the cluster dish also prevents the support and membrane from floating in the nutrient solution in the well. Openings in the support provide access for a pipette to add and withdraw fluid from the space between the well and membrane support and from the space below the membrane.