摘要:
Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
摘要:
Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte. The active consumable anode material(s) can have a microstructure which is fine-grained and/or amorphous to ensure a uniform anodic dissolution.
摘要:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
摘要:
In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials that are strong, tough, stiff and lightweight, are disclosed The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
摘要:
Articles containing fine-grained and/or amorphous metallic coatings/layers on at least part of their exposed surfaces are imprinted with surface structures to raise the contact angle for water in the imprinted areas at room temperature by equal to or greater than 10°, when compared to the flat and smooth metallic material surface of the same composition.
摘要:
An article includes an electrodeposited metallic material including Co with a minimum content of 75% by weight. The metallic material has a microstructure which is fine-grained with an average grain size between 2 and 5,000 nm and/or an amorphous microstructure. The metallic material forms at least part of an exposed surface of the article. The metallic material has an inherent contact angle for water of less than 90 degrees at room temperature when measured on a smooth exposed surface portion of the metallic material which has a maximum surface roughness Ra of 0.25 microns. The metallic material has an exposed patterned surface portion having surface structures having a height of between at least 5 microns to about 100 microns incorporated therein to increase the contact angle for water at room temperature of the exposed patterned surface portion to over 100 degrees.
摘要:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness chromium coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
摘要:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
摘要:
Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
摘要:
Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte. The active consumable anode material(s) can have a microstructure which is fine-grained and/or amorphous to ensure a uniform anodic dissolution.