Abstract:
A structure of a micro-electro-mechanical systems (MEMS) electroacoustic transducer includes a substrate, a diaphragm, a silicon material layer, and a conductive pattern. The substrate includes an MEMS device region. The diaphragm has openings, and is disposed in the MEMS device region. A first cavity is formed between the diaphragm and the substrate. The silicon material layer is disposed on the diaphragm and seals the diaphragm. The conductive pattern is disposed beneath the diaphragm in the MEMS device region.
Abstract:
An integrated circuit (IC) having a microelectromechanical system (MEMS) device buried therein is provided. The integrated circuit includes a substrate, a metal-oxide semiconductor (MOS) device, a metal interconnect, and the MEMS device. The substrate has a logic circuit region and a MEMS region. The MOS device is located on the logic circuit region of the substrate. The metal interconnect, formed by a plurality of levels of wires and a plurality of vias, is located above the substrate to connect the MOS device. The MEMS device is located on the MEMS region, and includes a sandwich membrane located between any two neighboring levels of wires in the metal interconnect and connected to the metal interconnect.
Abstract:
A protection structure of a pad is provided. The pad is disposed in a dielectric layer on a semiconductor substrate and the pad includes a connection region and a peripheral region which encompasses the connection region. The protection structure includes at least a barrier, an insulation layer and a mask layer. The barrier is disposed in the dielectric layer in the peripheral region. The insulation layer is disposed on the dielectric layer. The mask layer is disposed on the dielectric layer and covers the insulation layer and the mask layer includes an opening to expose the connection region of the pad.
Abstract:
A bond pad structure comprises an interconnection structure and an isolation layer. The dielectric layer has an opening and a metal pad. The isolation layer is disposed on the interconnection structure and extends into the opening until it is in contact with the metal pad, whereby the sidewalls of the opening is blanketed by the isolation layer, and a portion of the metal pad is exposed from the opening.
Abstract:
A fabrication method of a wafer structure includes: providing a substrate having a plurality of die regions and an edge region surrounding the die regions defined thereon; then, forming a dielectric layer, a plurality of MEMS devices, a plurality of metal-interconnect structures and a plurality bonding pads on the substrate in the die regions; next, removing the dielectric layer disposed on the substrate of the edge region to expose the substrate; and thereafter, forming a passivation layer to cover the substrate and the dielectric layer.
Abstract:
A method of fabricating a semiconductor optoelectronic structure is provided. First, a substrate is provided, and a waveguide is formed therein, and then a plurality of dielectric layers is formed on the waveguide. Next, a contact pad and a passivation layer are provided on the dielectric layers and a patterned mask layer is formed thereon. Last, an etching process is provided by using the patterned mask layer to expose the contact pad and remove a portion of the passivation layer and the dielectric layers to form a transformer.
Abstract:
A method for fabricating a MEMS is described as follows. A substrate is provided, including a circuit region and a MEMS region separated from each other. A first metal interconnection structure is formed on the substrate in the circuit region, and simultaneously a first dielectric structure is formed on the substrate in the MEMS region. A second metal interconnection structure is formed on the first metal interconnection structure, and simultaneously a second dielectric structure, at least two metal layers and at least one protection ring are formed on the first dielectric structure. The metal layers and the protection ring are formed in the second dielectric structure and the protection ring connects two adjacent metal layers to define an enclosed space between two adjacent metal layers. The first dielectric structure and the second dielectric structure outside the enclosed space are removed to form a MEMS device in the MEMS region.
Abstract:
A semiconductor structure is provided. The semiconductor structure includes a substrate, a dielectric layer, a pad structure and a protection structure. The dielectric layer is disposed on the substrate. The pad structure is disposed in the dielectric layer. The pad structure includes a plurality of first metal layers and a plurality of plugs which are electrically connected to each other vertically. There is no contact plug disposed between the pad structure and the substrate. The protection structure is disposed in the dielectric layer and encompasses the pad structure.
Abstract:
A method of fabricating MEMS device includes: providing a substrate with a first surface and a second surface. The substrate includes at least one logic region and at least one MEMS region. The logic region includes at least one logic device positioned on the first surface of the substrate. Then, an interlayer material is formed on the first surface of the substrate within the MEMS region. Finally, the second surface of the substrate within the MEMS region is patterned. After the pattern process, a vent pattern is formed in the second surface of the substrate within the MEMS region. The interlayer material does not react with halogen radicals. Therefore, during the formation of the vent pattern, the substrate is protected by the interlayer material and the substrate can be prevented from forming any undercut.
Abstract:
A semiconductor photodetector structure is provided. The structure includes a substrate, a photodetecting element and a semiconductor layer disposed on the photodetecting element. The substrate includes a first semiconductor material and includes a deep trench. The surface of the deep trench includes a first type dopant. The photodetecting element is disposed in the deep trench. The photodetecting element includes a second semiconductor material. The semiconductor layer includes a second type dopant.