Abstract:
Provided is an electrolytic disinfection system and method for purifying water. The electrolytic disinfection system includes; an electrolytic disinfection device which includes; a chamber, a first electrode disposed in the chamber, a second electrode disposed in the chamber and spaced apart from the first electrode, a water inlet part connected to the chamber, wherein the water inlet part allows influent water to be introduced to the chamber therethrough, and a water outlet part connected to the chamber, wherein the water outlet part allows the influent water to be discharged from the chamber therethrough, and an influent water heating device which is disposed upstream of the water inlet part and heats the influent water introduced to the chamber through the water inlet part.
Abstract:
Disclosed is a sterilizing catalyst, a sterilizing device and a sterilizing system, the sterilizing catalyst includes a metal lattice including a metal oxide, and an oxygen vacancy-inducing metal that is integrated or encompassed within the metal lattice. The metal oxide is an oxide of a divalent or multivalent metal. The oxygen vacancy-inducing metal has an oxidation number lower than that of the divalent or multivalent metal.
Abstract:
A drinking water filter system includes; a filter unit including; a first electrode and a second electrode disposed separate from and substantially opposite to the first electrode, wherein at least one of the first electrode and the second electrode is a filter layer, and a voltage applying device which alternately applies a forward voltage and a reverse voltage between the first electrode and the second electrode to sterilize and regenerate the at least one filter layer.
Abstract:
An inverse opal structure having dual porosity, a method of manufacturing the inverse opal structure, a dye-sensitized solar cell, and a method of manufacturing the dye-sensitized solar cell improve the light scattering effects of an included light scattering layer and improve functions of included electrodes. The inverse opal structure includes a plurality of first pores regularly arranged in a photonic crystal structure and a plurality of second pores formed on walls of the first pores in which the second pores have a nano-sized diameter.
Abstract:
A filter unit may include an electrode structure, a fluid-purifying flow path, and a pH adjusting chamber. The electrode structure may include a cathode, a cation exchange membrane, an anion exchange membrane, and an anode in that order. The fluid-purifying flow path may be at least one of a path in the cathode, between the cathode and the cation exchange membrane, between the anion exchange membrane and the anode, and in the anode. The fluid-purifying flow path may include an adsorption function. The pH adjusting chamber may be between the cation exchange membrane and the anion exchange membrane. The pH adjusting chamber may be configured to control the pH of the fluid in the fluid-purifying flow path.
Abstract:
A filter unit may include an electrode structure, a fluid-purifying flow path, and a pH adjusting chamber. The electrode structure may include a cathode, a cation exchange membrane, an anion exchange membrane, and an anode in that order. The fluid-purifying flow path may be at least one of a path in the cathode, between the cathode and the cation exchange membrane, between the anion exchange membrane and the anode, and in the anode. The fluid-purifying flow path may include an adsorption function. The pH adjusting chamber may be between the cation exchange membrane and the anion exchange membrane. The pH adjusting chamber may be configured to control the pH of the fluid in the fluid-purifying flow path.
Abstract:
Example embodiments relate to a yttrium hydroxycarbonate modified with a heterogeneous metal, a method of preparing the same, an adsorbent for a heavy metal including the same, and a filter device including the same. The modified yttrium hydroxycarbonate may have a pore size distribution with a pore diameter peak of less than or equal to 10 nm.
Abstract:
A water purifying filter may include an organic material adsorbent. The organic material adsorbent may include graphite with an interplanar spacing at the c-axis of about 0.3354 nm to 0.34 nm as measured by X-ray diffraction analysis (CuKα). A water purifying system may include the water purifying filter.
Abstract:
A filter unit may include a water permeable first electrode, a second electrode arranged so as to be spaced apart from and opposite to the first electrode, and a non-water permeable separator that is positioned between the first electrode and the second electrode. The first electrode may include a metal adsorbent (metal-adsorbing material) and thus may adsorb a metal included in the water. At least one of the first electrode and the second electrode may induce a water hydrolysis reaction to produce H+ ions to regenerate the metal adsorbent. The filter unit may further include a voltage applier to provide a filter system.