Abstract:
Methods are provided for separating magnetically responsive beads from a droplet in a droplet actuator. Droplet operations electrodes and a magnet are arranged in a droplet actuator to manipulate a bead-containing droplet and position it relative to a magnetic field region that attracts the magnetically responsive beads. The droplet operations electrodes are operated to control the droplet shape and transport it away from the magnetic field region to form a concentration of beads in the droplet. The continued transport of the droplet away from the magnetic field causes the concentration of beads to break away from the droplet to yield a small, concentrated bead-containing droplet immobilized by the magnet.
Abstract:
The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of splitting a droplet is provided, the method including providing a droplet microactuator including a droplet including one or more beads and immobilizing at least one of the one or more beads. The method further includes conducting one or more droplet operations to divide the droplet to yield a set of droplets including a droplet including the one or more immobilized beads and a droplet substantially lacking the one or more immobilized beads.
Abstract:
Provided herein are methods of splitting droplets containing magnetically responsive beads in a droplet actuator. A droplet actuator having a plurality of droplet operations electrodes configured to transport the droplet, and a magnetic field present at the droplet operations electrodes, is provided. The magnetically responsive beads in the droplet are immobilized using the magnetic field and the plurality of droplet operations electrodes are used to split the droplet into first and second droplets while the magnetically responsive beads remain substantially immobilized.
Abstract:
The invention provides a method of circulating magnetically responsive beads within a droplet in a droplet actuator. The invention also provides methods for splitting droplets. The invention, in one embodiment, makes use of a droplet actuator with top and bottom substrates, a plurality of magnetic fields respectively present proximate the top and bottom substrates, wherein at least one of the magnet fields is selectively alterable, and a plurality of droplet operations electrodes positioned along at least one of the top and bottom surfaces. A droplet is positioned between the top and bottom surfaces and at least one of the magnetic fields is selectively altered.
Abstract:
The invention provides droplet actuators with droplet operations surfaces for manipulating droplets, e.g., by conducting droplet operations. The droplet operations surfaces are typically exposed to a droplet operations gap. One or more regions of a droplet operation surface may include patterned topographic features. The invention also provides a droplet actuator in which one or both gap-facing droplet operations surfaces is formed using a removable film. The removable film may, in various embodiments, also include other components ordinarily associated with the droplet actuator substrate, such as the dielectric layer and the electrodes. Further, the invention provides droplet actuator devices and methods for coupling and/or sealing substrates of a droplet actuator, such as techniques for self-aligning assembly of droplet actuator substrates. The invention provides droplet actuators and methods of disassembling the droplet actuator in order to provide access for cleaning and/or recycling of droplet actuator surfaces.
Abstract:
The invention provides a method of circulating magnetically responsive beads within a droplet in a droplet actuator. The invention also provides methods for splitting droplets. The invention, in one embodiment, makes use of a droplet actuator with top and bottom substrates, a plurality of magnetic fields respectively present proximate the top and bottom substrates, wherein at least one of the magnet fields is selectively alterable, and a plurality of droplet operations electrodes positioned along at least one of the top and bottom surfaces. A droplet is positioned between the top and bottom surfaces and at least one of the magnetic fields is selectively altered.
Abstract:
The present invention relates to droplet-based particle sorting. According to one embodiment, a method of providing a droplet comprising a single cell is provided, wherein the method includes providing a droplet comprising a suspension of cells on an electrowetting droplet actuator surrounded by an oil medium, dispensing from the droplet to provide a dispensed droplet, determining whether the dispensed droplet on the electrowetting droplet actuator comprises a single cell, and sorting the dispensed droplet on the electrowetting droplet actuator based on the results of the determining step using electrowetting-mediated droplet operations.
Abstract:
A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
Abstract:
A method, circuit and apparatus for detecting capacitance on a droplet actuator, inter alia, for determining the presence, partial presence or absence of a droplet at an electrode on a droplet actuator by: (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged on the substrate for conducting droplet operations on a surface of the substrate; (ii) a capacitance detection circuit for detecting capacitance at the droplet operations surface at one or more of the electrodes; (b) detecting capacitance at the droplet operations surface at one or more of the electrodes; and (c) determining from the capacitance the presence, partial presence or absence of a droplet at the droplet operations surface at the electrode.
Abstract:
A method of providing a droplet in contact with a magnetically responsive bead and having a reduced quantity of a substance. The method generally includes the steps of (a) providing a droplet actuator comprising: (i) a substrate comprising electrodes arranged for conducting droplet operations on a surface; (ii) a starting droplet comprising: (1) one or more magnetically responsive beads; (2) a starting quantity of the substance; and (3) a starting volume; (b) magnetically immobilizing the one or more magnetically responsive beads at a location which is at a distance from a target droplet splitting zone; (c) conducting one or more droplet operations comprising droplet dividing operations selected to divide the combined droplet to yield a set of droplets comprising: (i) a droplet comprising substantially all of the one or more magnetically responsive beads and having a decreased quantity of the substance relative to the starting concentration; and (ii) a droplet substantially lacking the magnetically responsive beads.