Abstract:
The present disclosure relates to a semiconductor package structure including a semiconductor substrate, a semiconductor chip and a conductive material. The semiconductor substrate includes an insulating layer, a conductive circuit layer and a conductive bump. The conductive circuit layer is recessed from the top surface of the insulating layer, and includes at least one pad. The conductive bump is disposed on the at least one pad. A side surface of the conductive bump, a top surface of the at least one pad and a side surface of the insulating layer together define an accommodating space. The conductive material is electrically connected the conductive bump and the semiconductor chip, and a portion of the conductive material is disposed in the accommodating space.
Abstract:
A semiconductor package includes a set of stud bumps, which can be formed by wire bonding technology and can be bonded or joined to a semiconductor element to form a stacked package assembly. Since the process of bonding the semiconductor element to the stud bumps can be carried out without reflow, an undesirable deformation resulting from high temperatures can be controlled or reduced.
Abstract:
The present disclosure relates to a semiconductor substrate and a method for making the same. The semiconductor substrate includes an insulation layer, a first circuit layer, a second circuit layer, a plurality of conductive vias and a plurality of bumps. The first circuit layer is embedded in a first surface of the insulation layer, and exposed from the first surface of the insulation layer. The second circuit layer is located on a second surface of the insulation layer and electrically connected to the first circuit layer through the conductive vias. The bumps are directly located on part of the first circuit layer, where the lattice of the bumps is the same as that of the first circuit layer.
Abstract:
The present disclosure provides a substrate and a semiconductor package. The substrate includes a body, at least one pad group, a plurality of traces and at least one pillar group. The pad group includes a plurality of pads. Each pad has at least one inner side and at least one outer side. The inner side of a first pad is faced to the inner side of an adjacent second pad with a spaced section between. Each pillar group includes a plurality of pillars disposed on respective ones of the pads. The use of pad groups having multiple pads on which to form pillars allows an increase in the number of the pillars available in a given area so as to increase the amount of I/O connections. Furthermore, for a given number of I/O connections, the area occupied by the pads, pillars and traces can be reduced.
Abstract:
In accordance with the present invention, there is provided a semiconductor device comprising a semiconductor die or chip, a package body and a through package body via. The semiconductor chip includes a plurality of conductive pads. The package body encapsulates a sidewall of the semiconductor chip, and has at least one hole formed therein having a sidewall which is of a prescribed first surface roughness value. The through package body via is disposed in the hole of the package body and comprises a dielectric material and at least one conductive interconnection metal. The dielectric material is disposed on the sidewall of the hole and defines at least one bore having a sidewall which is of a second surface roughness value less than the first surface roughness value. The interconnection metal is disposed within the bore.
Abstract:
In accordance with the present invention, there is provided a semiconductor device comprising a semiconductor die or chip, a package body and a through package body via. The semiconductor chip includes a plurality of conductive pads. The package body encapsulates a sidewall of the semiconductor chip, and has at least one hole formed therein having a sidewall which is of a prescribed first surface roughness value. The through package body via is disposed in the hole of the package body and comprises a dielectric material and at least one conductive interconnection metal. The dielectric material is disposed on the sidewall of the hole and defines at least one bore having a sidewall which is of a second surface roughness value less than the first surface roughness value. The interconnection metal is disposed within the bore.
Abstract:
A semiconductor package structure includes a substrate, a semiconductor chip, and a solder material. The substrate includes an insulating layer, a conductive circuit layer, and a conductive bump. The conductive circuit layer is recessed from a top surface of the insulating layer. The conductive circuit layer includes a pad, and a side surface of the pad extends along a side surface of the insulating layer. The conductive bump is disposed on the pad. A side surface of the conductive bump, a top surface of the pad and the side surface of the insulating layer together define an accommodating space. A solder material electrically connects the conductive bump and the semiconductor chip. A portion of the solder material is disposed in the accommodating space.
Abstract:
In accordance with the present invention, there is provided a semiconductor device comprising a semiconductor die or chip, a package body and a through package body via. The semiconductor chip includes a plurality of conductive pads. The package body encapsulates a sidewall of the semiconductor chip, and has at least one hole formed therein having a sidewall which is of a prescribed first surface roughness value. The through package body via is disposed in the hole of the package body and comprises a dielectric material and at least one conductive interconnection metal. The dielectric material is disposed on the sidewall of the hole and defines at least one bore having a sidewall which is of a second surface roughness value less than the first surface roughness value. The interconnection metal is disposed within the bore.
Abstract:
In accordance with the present invention, there is provided a semiconductor device comprising a semiconductor die or chip, a package body and a through package body via. The semiconductor chip includes a plurality of conductive pads. The package body encapsulates a sidewall of the semiconductor chip, and has at least one hole formed therein having a sidewall which is of a prescribed first surface roughness value. The through package body via is disposed in the hole of the package body and comprises a dielectric material and at least one conductive interconnection metal. The dielectric material is disposed on the sidewall of the hole and defines at least one bore having a sidewall which is of a second surface roughness value less than the first surface roughness value. The interconnection metal is disposed within the bore.