摘要:
A through-hole electrode substrate includes a substrate including a through-hole extending from a first aperture of a first surface to a second aperture of a second surface, an area of the second aperture being larger than that of the first aperture, the through-hole having a minimum aperture part between the first aperture and the second aperture, wherein an area of the minimum aperture part in a planer view is smallest among a plurality of areas of the through-hole in a planer view, a filler arranged within the through-hole, and at least one gas discharge member contacting the filler exposed to one of the first surface and the second surface.
摘要:
Embodiments of the present disclosure provide a technique advantageous to an improvement in performance of a semiconductor device. The semiconductor device includes a first monocrystalline semiconductor layer on which a first semiconductor element is arranged, a second monocrystalline semiconductor layer on which a second semiconductor element is arranged, and a thin film transistor electrically connected to the first semiconductor element without an intervention of another semiconductor element arranged on the first monocrystalline semiconductor layer and electrically connected to the second semiconductor element without an intervention of another semiconductor element arranged on the second monocrystalline semiconductor layer.
摘要:
An apparatus relates generally to a microelectronic assembly. In this apparatus, a first substrate and a second substrate each have opposing surfaces. Contact arrangements are disposed on a surface of the first substrate, including: first contacts disposed as a ring to provide a first array of the contact arrangements on such surface; and second contacts disposed interior to the ring of the first contacts to provide a second array of the contact arrangements on the first surface. The first contacts and the second contacts are for interconnection with first microelectronic dies and second microelectronic dies. The second microelectronic dies are disposed below the first microelectronic dies in same a package as the first microelectronic dies. The first microelectronic dies and the second microelectronic dies include at least two ranks thereof for commonly sharing the first contacts and the second contacts among the first microelectronic dies and the second microelectronic dies.
摘要:
Some novel features pertain to a substrate that includes a first core layer, a second core layer laterally located to the first core layer in the substrate, a first inorganic core layer (e.g., glass, silicon, ceramic) laterally positioned between the first core layer and the second core layer, the first inorganic core layer configured to be vertically aligned with a die configured to be coupled to the substrate, and a dielectric layer covering the first core layer, the second core layer and the first inorganic core layer. In some implementations, the first inorganic core layer has a first coefficient of thermal expansion (CTE), the die has a second coefficient of thermal expansion, and the first core layer has a third coefficient of thermal expansion (CTE). The first CTE of the first inorganic core layer closely matches the second CTE of the die in order to reduce the likelihood of warpage.
摘要:
A semiconductor device has a semiconductor die having a plurality of bumps formed over a surface of the semiconductor die. The bumps can include a fusible portion and non-fusible portion. Conductive traces are formed over the substrate with interconnect sites having an exposed sidewall and sized according to a design rule defined by SRO+2*SRR−2X, where SRO is an opening over the interconnect site, SRR is a registration for the manufacturing process, and X is a function of a thickness of the exposed sidewall of the contact pad. The bumps are misaligned with the interconnect sites by a maximum distance of X which ranges from 5 to 20 microns. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate.
摘要:
A method includes forming a reconstructed wafer, which includes forming a redistribution structure over a carrier, bonding a first plurality of memory dies over the redistribution structure, bonding a plurality of bridge dies over the redistribution structure, and bonding a plurality of logic dies over the first plurality of memory dies and the plurality of bridge dies. Each of the plurality of bridge dies interconnects, and is overlapped by corner regions of, four of the plurality of logic dies. A second plurality of memory dies are bonded over the plurality of logic dies. The plurality of logic dies form a first array, and the second plurality of memory dies form a second array.
摘要:
Embodiments of this application provide a filtering structure and an electronic device. In the filtering structure, an intermediate assembly is disposed between a chip and a circuit board, a first filtering assembly is disposed inside the intermediate assembly, and at least a part of a second filtering assembly is disposed on a surface that is of the circuit board and that is away from the intermediate assembly, so that the first filtering assembly is close to the chip. This shortens a filtering path of the chip, improves a dynamic response capability of the chip, and therefore improves an overall filtering capability.
摘要:
The present disclosure is directed to systems and methods for improving the impedance matching of semiconductor package substrates by incorporating one or more magnetic build-up layers proximate relatively large diameter, relatively high capacitance, conductive pads formed on the lower surface of the semiconductor package substrate. The one or more magnetic layers may be formed using a magnetic build-up material deposited on the lower surface of the semiconductor package substrate. Vias conductively coupling the conductive pads to bump pads on the upper surface of the semiconductor package substrate pass through and are at least partially surrounded by the magnetic build-up material.
摘要:
A through-hole electrode substrate includes a substrate including a through-hole extending from a first aperture of a first surface to a second aperture of a second surface, an area of the second aperture being larger than that of the first aperture, the through-hole having a minimum aperture part between the first aperture and the second aperture, wherein an area of the minimum aperture part in a planer view is smallest among a plurality of areas of the through-hole in a planer view, a filler arranged within the through-hole, and at least one gas discharge member contacting the filler exposed to one of the first surface and the second surface.
摘要:
A chip bonding apparatus for bonding a chip and a redistribution structure with each other is provided. The chip bonding apparatus includes a pick and place module and an alignment module. The pick and place module is suitable for picking up and placing the chip. The alignment module is movably connected to the pick and place module. The alignment module includes at least one alignment protrusion, wherein the at least one alignment protrusion extends toward at least one alignment socket included in the redistribution structure. Furthermore, a chip bonding method and a chip package structure are provided.