摘要:
A galvanic isolated digital output circuit of a digital system is provided herein, which utilizes an electromagnetic coupling device for galvanically isolating the system side and the output side of the digital output circuit. The digital output circuit contains a system-side driving circuit, an electromagnetic coupling device, and an output-side control circuit. The electromagnetic coupling device contains at least a system-side electromagnetic coupling element, a first output-side electromagnetic coupling element, and a second output-side electromagnetic coupling element. The system-side driving circuit is connected to the system-side electromagnetic coupling element, and takes the ON/OFF digital control signals from the digital system as input to turn on and off its driving to the system-side electromagnetic coupling element. The electromagnetic coupling device converts and transmits the electrical energy from the system side to the output side and thereby provides the working energy to and required by the output control circuit connected to the first output-side electromagnetic coupling element. The second output-side electromagnetic coupling element forms a feedback circuit, through which the electrical status at the output side is fed back to the system side via the electromagnetic coupling device.
摘要:
A galvanic isolated digital output circuit of a digital system is provided herein, which utilizes an electromagnetic coupling device for galvanically isolating the system side and the output side of the digital output circuit. The digital output circuit contains a system-side driving circuit, an electromagnetic coupling device, and an output-side control circuit. The electromagnetic coupling device contains at least a system-side electromagnetic coupling element, a first output-side electromagnetic coupling element, and a second output-side electromagnetic coupling element. The system-side driving circuit is connected to the system-side electromagnetic coupling element, and takes the ON/OFF digital control signals from the digital system as input to turn on and off its driving to the system-side electromagnetic coupling element. The electromagnetic coupling device converts and transmits the electrical energy from the system side to the output side and thereby provides the working energy to and required by the output control circuit connected to the first output-side electromagnetic coupling element. The second output-side electromagnetic coupling element forms a feedback circuit, through which the electrical status at the output side is fed back to the system side via the electromagnetic coupling device.
摘要:
A semiconductor wafer structure comprises a first surface and a second surface opposite to the first surface, a plurality of chip areas formed on the first surface, a plurality of through-silicon holes formed in each of the plurality of chip areas connecting the first surface and the second surface, and a through-silicon-via (TSV) electrode structure formed in each through-silicon hole. Each through-silicon-via electrode structure comprises a dielectric layer formed on the inner wall of the through-silicon hole, a barrier layer formed on the inner wall of the dielectric layer and defining a vacancy therein, a filling metal layer filled into the vacancy, a first end of the filling metal layer being lower than the first surface forming a recess, and a soft metal cap connecting to and overlaying the first end of the filling metal layer, wherein a portion of the soft metal cap is formed in the recess and the soft metal cap protrudes out of the first surface. Hence, the reliability of multi-chip stack package structure can be enhanced with the application of these soft metal caps.
摘要:
An electronic device comprises a substrate and at least a warped spring connector. The substrate has a signal bonding pad and a ground plane. The warped spring connector is disposed on the substrate and is connected to the bonding pad. The warped spring connector includes at least a ground lead electrically connected to the ground plane, a dielectric layer on the ground lead, and a transmitting lead on the dielectric layer. The transmitting lead is bonded to the bonding pad. The ground lead is isolated from and close to the transmitting lead to solve cross-talk and noise problem. Furthermore, the coefficient of thermal expansion of the transmitting lead is different from that of the dielectric layer or the ground lead such that the warped spring connector has a suspending end suspending away from the substrate.
摘要:
MEMS processes for fabrication of a MEMS alloy probe are revealed. Multiple layers of the MEMS alloy probe are formed on the substrate in sequences as a first surface layer, a first conductive layer, a core layer, a second conductive layer, and a second surface layer where the width of the first conductive layer is smaller than the one of first surface layer so that all the exposed edges of the first surface layer are not covered by the first conductive layer. The second surface layer is extended from the sidewalls of the core layer to the exposed edges of the first surface layer to encapsulate the core layer, the first conductive layer, and the second conductive layer. The MEMS alloy probe fabricated by the MEMS processes can eliminate the issue of oxidation.
摘要:
A modular probe card comprises a printed circuit board, an interposer, and a probe head where the printed circuit board has a plurality of first contact pads, the probe head has a plurality of second contact pads. The interposer is disposed between the printed circuit board and the probe head where the interposer includes a substrate and a plurality of pogo pins. The substrate has a first surface, a second surface, and a plurality of through holes penetrating from the first surface to the second surface. The pogo pins are secured in the through holes of the substrate. Each of the pogo pins has a first contact point, a second contact point, and a spring therebetween, whereby the first contact points are elastically extruded from the first surface to contact the first contact pad, and the second contact points are elastically extruded from the second surface to contact the second contact pad, so as to overcome the poor electrical connections between the printed circuit board and the probe head through the interposer due to poor coplanarity of the first contact pads of the printed circuit board.
摘要:
A high frequency IC package mainly includes a substrate, a bumped chip, and a plurality of conductive fillers where the substrate has a plurality of bump holes penetrating from the top surface to the bottom surface. The active surface of the chip is attached to the top surface of the substrate in a manner that the bumps are inserted into the bump holes respectively. The conductive fillers are formed in the bump holes to electrically connect the bumps to the circuit layer of the substrate. The high frequency IC package has a shorter electrical path and a thinner package thickness.
摘要:
A bump structure mainly includes a metal core, a buffer encapsulant, and a metal cap where the metal core is a stud bump formed by wire bonding. The buffer encapsulant encapsulates the metal core. A metal cap is formed on the top surface of the buffer encapsulant and is electrically connected to the metal core. Therefore, the bump structure possesses excellent resistance of thermal stress to reduce or even eliminate metal fatigue in the bump without causing electrical shorts in the package.
摘要:
A method of forming a plurality of elastic probes in a row is disclosed. Firstly, a substrate is provided, then, a shaping layer is formed on the substrate so as to offer two flat surfaces in parallel. A photoresist layer is formed on the substrate and on the shaping layer. Then, the photoresist layer is patterned to form a plurality of slots crossing an interface between the two flat surfaces where a plurality of elastic probes are formed in the slots. In one embodiment, the interface is an edge slope of the shaping layer so that each of the elastic probes has at least an elastic bending portion. During chip probing, the shifting direction of the elastic probes due to overdrives is perpendicular to the arranging direction of the bonding pads so that the elastic probes are suitable for probing chips with high-density and fine-pitch bonding pads.
摘要:
A method of forming a plurality of elastic probes in a row is disclosed. Firstly, a substrate is provided, then, a shaping layer is formed on the substrate so as to offer two flat surfaces in parallel. A photoresist layer is formed on the substrate and on the shaping layer. Then, the photoresist layer is patterned to form a plurality of slots crossing an interface between the two flat surfaces where a plurality of elastic probes are formed in the slots. In one embodiment, the interface is an edge slope of the shaping layer so that each of the elastic probes has at least an elastic bending portion. During chip probing, the shifting direction of the elastic probes due to overdrives is perpendicular to the arranging direction of the bonding pads so that the elastic probes are suitable for probing chips with high-density and fine-pitch bonding pads.