摘要:
[Object] In the control of electron beam focusing of a pierce-type electron gun, any influences from the space charge effect and space charge neutralizing action within the electron gun are eliminated to attain complete control of an electron beam.[Solving Means] Feedback control of the pressure within the electron gun is performed by directly measuring temperature at an internal of the pierce-type electron gun. It is desirable that locations where the direct measurement of the temperature at the internal of the electron gun is performed are an anode (39) and a flow register (43). Further, the direct measurement can be performed at any one of a ring, an aperture and an exhaust pipe provided at an outlet or an inlet of any one of a cathode chamber (31), an intermediate chamber, and a scanning chamber (33). Accordingly, all of stabilization of beam producing area (optimized design of electron gun itself), stabilization of beam transporting portion and stabilization of beam using portion have become appropriate.
摘要:
[Object] In the control of electron beam focusing of a pierce-type electron gun, any influences from the space charge effect and space charge neutralizing action within the electron gun are eliminated to attain complete control of an electron beam.[Solving Means] Feedback control of the pressure within the electron gun is performed by directly measuring temperature at an internal of the pierce-type electron gun. It is desirable that locations where the direct measurement of the temperature at the internal of the electron gun is performed are an anode (39) and a flow register (43). Further, the direct measurement can be performed at any one of a ring, an aperture and an exhaust pipe provided at an outlet or an inlet of any one of a cathode chamber (31), an intermediate chamber, and a scanning chamber (33). Accordingly, all of stabilization of beam producing area (optimized design of electron gun itself), stabilization of beam transporting portion and stabilization of beam using portion have become appropriate.
摘要:
The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.
摘要:
An electron beam apparatus such as a sheet beam based testing apparatus has an electron-optical system for irradiating an object under testing with a primary electron beam from an electron beam source, and projecting an image of a secondary electron beam emitted by the irradiation of the primary electron beam, and a detector for detecting the secondary electron beam image projected by the electron-optical system; specifically, the electron beam apparatus comprises beam generating means 2004 for irradiating an electron beam having a particular width, a primary electron-optical system 2001 for leading the beam to reach the surface of a substrate 2006 under testing, a secondary electron-optical system 2002 for trapping secondary electrons generated from the substrate 2006 and introducing them into an image processing system 2015, a stage 2003 for transportably holding the substrate 2006 with a continuous degree of freedom equal to at least one, a testing chamber for the substrate 2006, a substrate transport mechanism for transporting the substrate 2006 into and out of the testing chamber, an image processing analyzer 2015 for detecting defects on the substrate 2006, a vibration isolating mechanism for the testing chamber, a vacuum system for holding the testing chamber at a vacuum, and a control system 2017 for displaying or storing positions of defects on the substrate 2006.
摘要:
The present invention provides an electron beam apparatus which can capture images at high speeds even using an area sensor which senses a small number of frames per second, by deflecting a primary electron beam by a deflector to irradiate each of sub-visual fields which are formed by dividing an evaluation area on a sample surface, and detecting secondary electrons containing information on the sample surface in each of the sub-visual fields by a detecting device. For this purpose, the detecting device 26 of the electron beam apparatus comprises a plurality of unit detectors 24-1 each including an area sensor CCD 1 (˜CCD 14), a bundle of optical fibers 25 having one end coupled to a detection plane of the area sensor, an FOP coated on the other end of the bundle of optical fibers and formed with a scintillator, on which a secondary electron beam emitted from the sub-visual fields are focused. An electromagnetic deflector deflects the secondary electron beam emitted from the sub-visual fields each time the electron beam is irradiated to a next sub-visual field to move the secondary electron beams over the surfaces of the FOPs of the unit detectors. Since image information can be fetched from each unit detector during exposure of the other unit detectors, images can be captured at high speeds.
摘要:
A method of machining a cathode used in an electron gun. The method includes steps of placing an object to be machined, which is a material of the cathode, and a machining electrode in an electrically insulating oil; applying a discharge current to the machining electrode; and machining the object to be machined to have a shape corresponding to the shape of the machining electrode by means of electric discharge machining of the machining electrode. The machining electrode includes a disk, recesses formed on a front surface of the disk, a protrusion provided on a back surface of the disk, and a hole for mounting a lead wire for applying discharge current to the machining electrode. Bumps corresponding to the shape of the recesses of the machining electrode are formed on the object to be machined by means of the electric discharge machining.
摘要:
An electron beam emitted from an electron gun (G) forms a reduced image on a sample (S) through a non-dispersion Wien-filter (5-1), an electromagnetic deflector (11-1), a beam separator (12-1), and a tablet lens (17-1) as an objective lens. The beam separator (12-1) is configured such that a distance by which a secondary electron beam passes through the beam separator is approximately three times longer than a distance by which a primary electron beam passes through the beam separator. Therefore, even if a magnetic field in the beam separator is set to deflect the primary electron beam by a small angle equal to or less than approximately 10 degrees, the secondary electron beam can be deflected by approximately 30 degrees, so that the primary and secondary electron beams are sufficiently separated. Also, since the primary electron beam is deflected by a small angle, less aberration occurs in the primary electron beam. Accordingly, since a light path length of a primary electro-optical system, it is possible to reduce the influence of space charge and the occurrence of deflection aberration.
摘要:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.
摘要:
An electron beam apparatus comprises a TDI sensor 64 and a feed-through device 50. The feed-through device has a socket contact 54 for interconnecting a pin 52 attached to a flanged 51 for separating different environments and the other pin 53 making a pair with the pin 52, in which the pin 52, the other pin 53 and the socket contact 54 together construct a connecting block, and the socket contact 54 has an elastic member 61. Accordingly, even if a large number of connecting blocks are provided, the connecting force may be kept to such a low level as to prevent the breakage in the sensor. The pin 53 is connected with the TDI sensor 64, in which a pixel array has been adaptively configured based on the optical characteristic of an image projecting optical system. That sensor has a number of integration stages that can reduce the field of view of the image projecting optical system to as small as possible so that a maximal acceptable distortion within the field of view may be set larger. Further, the number of integration stage may be determined such that the data rate of the TDI sensor would not be reduced but the number of pins would not be increased as much as possible. Preferably, the number of line count may be almost equal to the number of integration stages.
摘要:
Secondary electrons emitted from a sample (W) by an electron beam irradiation is deflected by a beam separator (77), and is deflected again in a perpendicular direction by an aberration correction electrostatic deflector (711) to form a magnified image on the principal plane of an auxiliary lens (712). The secondary electron beam diverged from the auxiliary lens (712) passes through axial chromatic aberration correction lenses (714-717) and images on a principal plane of an auxiliary lens (718) for a magnifying lens (719). The magnified image is formed in a position spaced apart from the optical axis. Therefore, when the secondary electron beam diverged from the auxiliary lens (712) is incident on the axial chromatic aberration correction lenses without any change, large abaxial aberration occurs. To avoid it, the auxiliary lens (712) is used to form the image of an NA aperture (724) in substantially a middle (723) in the light axis direction of the axial chromatic aberration correction lenses (714-717).