Abstract:
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
Abstract:
Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a thin metal film involves introducing precursor molecules proximate to a surface on or above a substrate, each of the precursor molecules having one or more metal centers surrounded by ligands. The method also involves depositing a metal layer on the surface by dissociating the ligands from the precursor molecules using a photo-assisted process.
Abstract:
An embodiment discloses an electronic device comprising an integrated circuit (IC) die, a stub extending from the IC die; and a mesa structure under the IC die, wherein the IC die and the stub are bonded to the mesa structure.
Abstract:
Methods of selectively transferring portions of layers between substrates, and devices and systems formed using the same, are disclosed herein. In one embodiment, a first substrate with a layer of integrated circuit (IC) components is received, and a second substrate with one or more adhesive areas is received. The first substrate is partially bonded to the second substrate, such that a subset of IC components on the first substrate are bonded to the adhesive areas on the second substrate. The first substrate is then separated from the second substrate, and the subset of IC components bonded to the second substrate are separated from the first substrate and remain on the second substrate.
Abstract:
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
Abstract:
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
Abstract:
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
Abstract:
A method of an aspect includes forming a first thicker layer of a first material over a first region having a first surface material by separately forming each of a first plurality of thinner layers by selective chemical reaction. The method also includes limiting encroachment of each of the first plurality of thinner layers over a second region that is adjacent to the first region. A second thicker layer of a second material is formed over the second region having a second surface material that is different than the first surface material.
Abstract:
An embodiment discloses a method comprising receiving a substrate comprising a first layer, a second layer over the first layer, and a third layer over the second layer, the third layer comprising a plurality of integrated circuit (IC) components, and applying a laser to ablate portions of the first layer, wherein the second layer protects the third layer from cracking during application of the laser.
Abstract:
Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.