摘要:
A method of fabricating hydrophobic and oleophobic polymer fabric through two stages of modification using atmospheric plasmas including (a) moving a substrate into an atmospheric plasma area, generating an atmospheric filamentary discharge plasma with a first plasma working gas to obtain a first rough surface of said substrate, (b) exposing plasma treated substrate to air to obtain highly active peroxide on said first rough surface of said substrate, (c) immersing said substrate in a solution of fluorocarbon compound and processing a first stage of graft of a fluorocarbon monomer or oligomer on said substrate to obtain a grafted fluorocarbon monomer or oligomer layer on said first rough surface of said substrate, (d) processing a second stage of graft a fluorocarbon functional group to said grafted fluorocarbon monomer or oligomer layer by generating a carbon tetrafluoride plasma from a second plasma working gas and irradiating said carbon tetrafluoride plasma on said grafted fluorocarbon monomer or oligomer layer; and (e) curing and drying said substrate.
摘要:
The present invention fabricates a hydrophobic and oleophobic polymer fabric through two stages of modification using atmospheric plasmas. The modified fabric has a rough surface and a fluorocarbon functional group having the lowest surface free energy. The fabric has a grafted fluorocarbon monomer layer to enhance the graft efficiency of the fluorocarbon functional groups and its wash fastness. The atmospheric plasmas can be mass produced and less expensively. Hence, the present invention can rapidly modify surfaces of polymeric materials with low cost and good environment protection.
摘要:
A dielectric barrier discharge uses three electrodes at an atmospheric pressure. A wide discharge gap can be used and an enhanced plasma density can be achieved so that thick materials can be processed and its processing speed can also be greatly improved.
摘要:
Abstract of the disclosure The present invention provides a method and an apparatus for a glow discharge plasma surface treatment of flexible sheet materials under atmospheric pressure. The apparatus comprises electrodes, a single plasma-gas flow channel, uniform gas inlet-and-outlet devices, gas-seal devices for the horizontal movements of sheet materials and reel devices, so as to attain an uniform distribution of plasma gases in the gap between electrodes. As a result, not only a great amount of expensive plasma gas is saved, but also an uniform glow discharge plasma is generated at the lowest input power to obtain a good quality of uniform plasma treatment with continuous processing and high production.
摘要:
An apparatus provides large area atmospheric pressure plasma enhanced chemical vapor deposition without contaminations in its electrode assembly and deposited films. The apparatus consists of a large area vertical planar nitrogen plasma activation electrode assembly and its high voltage power supply, a large area vertical planar nitrogen plasma deposition electrode assembly and its high voltage power supply, a long-line uniform precursor jet apparatus, a roll-to-roll apparatus for substrate movement, and a sub-atmospheric pressure deposition chamber and its pumping apparatus. Not only can the deposited film contaminations in the electrode assembly interior and the debris of the deposited films from exterior of the electrode assembly and the air aerosols in the deposition chamber be completely prevented, but a large area roll-to-roll uniform deposition can also be achieved to meet a roll-to-roll continuous production, so as to achieve improved film quality, increased production throughput and reduced manufacturing cost.
摘要:
A hollow-cathode plasma generator includes a plurality of hollow cathodes joined together and connected to a power supply for generating plasma in vacuum. Each of the hollow cathodes includes at least one fillister defined therein, a fin formed on a side of the fillister, an air-circulating tunnel in communication with the fillister and a coolant-circulating tunnel defined therein. The fillister is used to contain working gas. The fin receives negative voltage from the power supply for ionizing the working gas to generate the plasma and spread the plasma in a single direction. The working gas travels into the fillister from the air-circulating tunnel. The coolant-circulating tunnel is used to circulate coolant for cooling the hollow cathode.
摘要:
The present disclosure passivates solar cell defects. Plasma immersion ion implantation (PIII) is used to repair the defects during or after making the solar cell. Hydrogen ion is implanted into absorption layer with different sums of energy to fill gaps of defects or surface recombination centers. Thus, solar cell defects are diminished and carriers are transferred with improved photovoltaic conversion efficiency.
摘要:
The present disclosure passivates solar cell defects. Plasma immersion ion implantation (PIII) is used to repair the defects during or after making the solar cell. Hydrogen ion is implanted into absorption layer with different sums of energy to fill gaps of defects or surface recombination centers. Thus, solar cell defects are diminished and carriers are transferred with improved photovoltaic conversion efficiency.
摘要:
A method for pulsed plasma deposition of titanium dioxide film is revealed. The method includes the steps of: (1) set a substrate into a chamber and the chamber is pumped down to a certain vacuum level. (2) Introduce titanium tetraisopropoxide gas and gas containing oxygen into the chamber and a RF (radio frequency) pulse power supply is turned on to create a glow discharge for generating pulsed plasma. (3) A layer of titanium dioxide film is deposited on the substrate by the pulsed plasma. The TiO2 film is deposited on a substrate such as plastic substrate at low temperature according to the method so that the heat-resistant and conductive requirements of conventional substrates are removed.
摘要:
A protective coating is formed on a stainless interconnecting plate used in solid oxide fuel cell (SOFC). With the protective coating, a contact resistance of the plate is effectively lowered. Anode and cathode of SOFC are also prevented from being poisoned by chromium diffusion from the plate. Therefore, after a long time of use under a high temperature, a degradation rate for power generating of SOFC is reduced; and, thus, a working hour is prolonged. Hence, the SOFC can be mass-produced and large-scaled.