摘要:
A semiconductor device has a first semiconductor die containing a low pass filter and baluns. The first semiconductor die has a high resistivity substrate. A second semiconductor die including a bandpass filter is mounted to the first semiconductor die. The second semiconductor die has a gallium arsenide substrate. A third semiconductor die including an RF switch is mounted to the first semiconductor die. A fourth semiconductor die includes an RF transceiver. The first, second, and third semiconductor die are mounted to the fourth semiconductor die. The first, second, third, and fourth semiconductor die are mounted to a substrate. An encapsulant is deposited over the first, second, third, and fourth semiconductor die and substrate. A plurality of bond wires is formed between the second semiconductor die and first semiconductor die, and between the third semiconductor die and first semiconductor die, and between the first semiconductor die and substrate.
摘要:
A semiconductor wafer contains semiconductor die. A first conductive layer is formed over the die. A resistive layer is formed over the die and first conductive layer. A first insulating layer is formed over the die and resistive layer. The wafer is singulated to separate the die. The die is mounted to a temporary carrier. An encapsulant is deposited over the die and carrier. The carrier and a portion of the encapsulant and first insulating layer is removed. A second insulating layer is formed over the encapsulant and first insulating layer. A second conductive layer is formed over the first and second insulating layers. A third insulating layer is formed over the second insulating layer and second conductive layer. A third conductive layer is formed over the third insulating layer and second conductive layer. A fourth insulating layer is formed over the third insulating layer and third conductive layer.
摘要:
A dispersion compensation method and a dispersion compensation device in an optical communication system are provided. The method mainly includes the following steps. A dispersion compensation value transmitted through a working path at a second wavelength is received through a non-working path at a first wavelength in an optical communication system. The non-working path at the first wavelength and the working path at the second wavelength use the same service channel. Dispersion in the non-working path at the first wavelength is compensated according to the dispersion compensation value. Therefore, no matter the working path is a main path or a backup path, the dispersion compensation value on the non-working path can be accurately regulated in time, such that the dispersion of the working path reaches an optimal status each time after the protection switching occurs to the service, thereby ensuring the fast switching of the service.
摘要:
A semiconductor device has an RF balun formed over a substrate. The RF balun includes a first conductive trace wound to exhibit inductive properties with a first end coupled to a first terminal of the semiconductor device and second end coupled to a second terminal of the semiconductor device. A first capacitor is coupled between the first and second ends of the first conductive trace. A second conductive trace is wound to exhibit inductive properties with a first end coupled to a third terminal of the semiconductor device and second end coupled to a fourth terminal of the semiconductor device. The first conductive trace is formed completely within the second conductive trace. The first conductive trace and second conductive trace can have an oval, circular, or polygonal shape separated by 50 micrometers. A second capacitor is coupled between the first and second ends of the second conductive trace.
摘要:
An apparatus for processing a recording medium with embedded information comprises: a passage mechanism including a first passage, a loop passage and recording medium conveying rollers, wherein a first opening and a second opening of the loop passage are connected to the tail end of the first passage; a first guide mechanism configured to selectively communicate the first passage with the first opening or the second opening of the loop passage; and a processing device including a magnetic head and a print head which are arranged in the first passage, wherein the magnetic head is arranged at a side of a recording medium inlet/outlet port which is adjacent to a leading end of the first passage. A method for processing the recording medium with embedded information is also disclosed. According to the apparatus and method for processing the recording medium mentioned above, the recording medium can be turned over automatically during moving through the loop passage, so that the printing on both sides of the recording medium can be realized by one single print head, and thus a comprehensive process on the recording medium with embedded information is realized, and the cost of the apparatus is reduced.
摘要:
The present invention relates to a method for making a thermoacoustic device. The method includes the following steps. A substrate with a surface is provided. A plurality of microspaces is formed on the surface of the substrate. A sacrifice layer is fabricated to fill the microspaces. A metal film is deposited on the sacrifice layer, and the sacrifice layer is removed. A signal input device is provided to electrically connect with the metal film.
摘要:
The present invention relates to riminophenazines having heteroaromatic substitutions, including those with 2-heteroaryl-amino substituents, to their preparation, and to their use as drugs for treating Mycobacterium tuberculosis and other microbial infections, either alone or in combination with other anti-infective treatments.
摘要:
A top-side cooled compact semiconductor package with integrated bypass capacitor is disclosed. The top-side cooled compact semiconductor package includes a circuit substrate with terminal leads, numerous semiconductor dies bonded atop the circuit substrate, numerous elevation-adaptive interconnection plates for bonding and interconnecting top contact areas of the semiconductor dies with the circuit substrate, a first member of the elevation-adaptive interconnection plates has a first flat-top area and a second member of the elevation-adaptive interconnection plates has a second flat-top area in level with the first flat-top area, a bypass capacitor, having two capacitor terminals located at its ends, stacked atop the two interconnection plate members while being bonded thereto via the first flat-top area and the second flat-top area for a reduced interconnection parasitic impedance.
摘要:
A semiconductor device has a first coil structure formed over the substrate. A second coil structure is formed over the substrate adjacent to the first coil structure. A third coil structure is formed over the substrate adjacent to the second coil structure. The first and second coil structures are coupled by mutual inductance, and the second and third coil structures are coupled by mutual inductance. The first, second, and third coil structures each have a height greater than a skin current depth of the coil structure defined as a depth which current reduces to 1/(complex permittivity) of a surface current value. A thin film capacitor is formed within the semiconductor device by a first metal plate, dielectric layer over the first metal plate, and second and third electrically isolated metal plates opposite the first metal plate. The terminals are located on the same side of the capacitor.
摘要:
A semiconductor die has an RF coupler and balun integrated on a common substrate. The RF coupler includes first and second conductive traces formed in close proximity. The RF coupler further includes a resistor. The balun includes a primary coil and two secondary coils. A first capacitor is coupled between first and second terminals of the semiconductor die. A second capacitor is coupled between a third terminal of the semiconductor die and a ground terminal. A third capacitor is coupled between a fourth terminal of the semiconductor die and the ground terminal. A fourth capacitor is coupled between the high side and low side of the primary coil. The integration of the RF coupler and balun on the common substrate offers flexible coupling strength and signal directivity, and further improves electrical performance due to short lead lengths, reduces form factor, and increases manufacturing yield.