Abstract:
Disclosed herein are embodiments of materials having high thermal conductivity along with a high dielectric constants. In some embodiments, a two phase composite ceramic material can be formed having a contiguous aluminum oxide phase with a secondary phase embedded within the continuous phase. Example secondary phases include calcium titanate, strontium titanate, or titanium dioxide.
Abstract:
A dielectric composition comprising a main component expressed by a chemical formula of (A6-xBxCx+2D8-xO30, 0≤x≤5), wherein said “A” component is at least one element selected form the group consisting of Ba, Ca, and Sr, said “B” component is at least one element selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, said “C” component is at least one element selected from the group consisting of Ti, and Zr, said “D” component is at least one element selected from the group consisting of Nb, and Ta, and said dielectric composition comprises 2.50 mol or more and 20.00 mol or less of an oxide of Ge as a first sub component with respect to 100 mol of said main component.
Abstract:
LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
Abstract:
A multilayer ceramic capacitor that includes a laminated body of multiple dielectric layers and internal electrodes laminated alternately therewith. The dielectric layers contain Ba, Sr, Ti, Ca, Zr, Mg, and R, where R represents at least one element of Y, La, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. When Ti is 100 parts by mol, the dielectric layers contain Sr at 0.5 to 3.0 parts by mol; Ca at 3 to 15 parts by mol; Sr at 0.05 to 3.0 parts by mol; Mg at 0.01 to 0.0 9 parts by mol; and R at 2.5 to 8.4 parts by mol.
Abstract:
The present disclosure relates to a precursor solution for the preparation of a ceramic of the BZT-αBXT type, where X is selected from Ca, Sn, Mn, and Nb, and α is a molar fraction selected in the range between 0.10 and 0.90, said solution comprising: 1) at least one barium precursor compound; 2) a precursor compound selected from the group consisting of at least one calcium compound, at least one tin compound, at least one manganese compound, and at least one niobium compound; 3) at least one anhydrous precursor compound of zirconium; 4) at least one anhydrous precursor compound of titanium; 5) a solvent selected from the group consisting of a polyol and mixtures of a polyol and a secondary solvent selected from the group consisting of alcohols, carboxylic acids, ketones, and mixtures thereof; and 6) a chelating agent, as well as method of using the same.
Abstract:
A dielectric ceramic composition and a ceramic electric device having a dielectric layer composed of the dielectric ceramic composition including a main component having a perovskite crystal structure expressed by general formula ABO3, an oxide of Eu, an oxide of Ra (Sc, Er, Tm, Yb and Lu), an oxide of Rb (Y, Dy, Ho, Tb and Gd) and an oxide of Si, in which 0.075≦α≦0.5, 0.5≦β≦3, 1.0≦γ≦4, 1.5≦δ≦5, and 0.030≦α/δ≦0.250 where a content of an oxide of Eu is α mole, a content of the oxide of Ra is β mole, a content of the oxide of Rb is γ mole, and a content of the second sub-component is δ mole with respect to 100 moles of the main component.
Abstract:
A piezoelectric thin film does not easily generate a heterogeneous phase and exhibits good piezoelectric characteristics. The piezoelectric thin film contains a composition represented by a general formula: (1-n) (K1-xNax)mNbO3-nCaTiO3, wherein m, n, and x in the general formula are within the ranges of 0.87≦m≦0.97, 0≦n≦0.065, and 0≦x≦1.
Abstract:
A sintered refractory ceramic composition including: a pseudobrookite structured discrete first phase; and a continuous second phase, as defined herein. Also disclosed is a method of making the sintered refractory ceramic composition.
Abstract:
A ceramic dielectric composition contains a base material powder represented by one or more of (Ca1-xSrx)(Zr1-yTiy)O3, Ca(Zr1-yTiy)O3, Sr(Zr1-yTiy)O3, (Ca1-xSrx)ZrO3, and (Ca1-xSrx)TiO3, in which x and y satisfy 0≦x≦1.0 and 0.2≦y≦0.9, respectively. The ceramic dielectric composition may have high room-temperature permittivity and excellent ESD protection characteristics and may secure withstand voltage characteristics while implementing relatively high capacitance.