Abstract:
This application is directed to an apparatus for creating microwave radiation patterns for an object detection system. The apparatus includes a waveguide conduit having first slots at one side of the conduit and corresponding second slots at an opposite side of the conduit. The waveguide conduit is coupled to a microwave source for transmitting microwaves from the microwave source through the plurality of first slots. A plunger is moveably positioned in the waveguide conduit from one end thereof. The plunger allows the waveguide conduit to be tuned to generally optimize the power of the microwaves exiting the first slots. Secondary plungers are each fitted in one of the second slots to independently tune or detune microwave emittance through a corresponding first slot.
Abstract:
A microwave plasma processing apparatus includes a processing space; a microwave generator which generates microwaves for generating a plasma; a distributor which distributes the microwaves to a plurality of waveguides; an antenna installed in a processing container to seal the processing space and to radiate microwaves distributed by the distributor, to the processing space; and a monitor unit configured to monitor a voltage of each of the plurality of waveguides. A control unit acquires a control value of a distribution ratio of the distributor, which corresponds to a difference between a voltage monitor value of the monitor unit and a predetermined voltage reference value, from a storage unit that stores the difference and the control value corresponding to each other. The control unit is also configured to control the distribution ratio of the distributor, based on the acquired control value.
Abstract:
A microwave radiation antenna includes an antenna body having a microwave radiation surface; a processing gas inlet configured to introduce a processing gas into the antenna body; a gas diffusion space configured to diffuse the processing gas in the antenna body; a plurality of gas outlets provided in the antenna body and configured to discharge the processing gas into the chamber; a plurality of slots provided in the antenna body under a state where the slots are separated from the gas diffusion space and the gas outlets; and an annular dielectric member provided in the microwave radiation surface side of the antenna body to cover a slot formation region where the slots are formed. A metal surface wave is formed in the microwave radiation surface by the microwave radiated through the slots and the annular dielectric member and a surface wave plasma is generated by the metal surface wave.
Abstract:
A method of forming a metal oxide film by the plasma CVD method and comprising reacting chiefly an organometal by a glow discharge in a low output region and, then, reacting the organometal with an oxidizing gas by the glow discharge in a high-output region to form a metal oxide film on the surface of a plastic substrate via an organic layer. This method forms a thin film having excellent adhesiveness, softness and flexibility on the surface of a plastic substrate relying on the plasma CVD method.
Abstract:
A magnetron has an anode cylinder, a plurality of vanes extending radially inwardly from the anode cylinder, a cathode filament extending along a center axis of the anode cylinder, an output section including an antenna coupled to one of the vanes, and a magnetic circuit section for supplying a magnetic field into the anode cylinder, whereby the magnetron oscillates at a fundamental frequency in a range from 400 MHz to 600 MHz.
Abstract:
Disclosed herein are systems, methods, and devices processing feed material utilizing an upstream swirl module and composite gas flows. Some embodiments are directed to a microwave plasma apparatus for processing a material, comprising: a first flow module, a second flow module, and a liner.
Abstract:
Systems and methods of forming a thin film on substrate includes positioning the substrate in a chamber; generating, via a uniform microwave field generator, a microwave field around the substrate; and guiding radicals into the chamber so that plasma is generated about the substrate to form the thin film on the substrate.
Abstract:
Proposed are a substrate treatment method and a substrate treatment system in which a cooling process with an improved cooling speed and an improved cooling efficiency is applied in a substrate treatment process using an upper heat source. A substrate treatment method etching a substrate at an atomic layer level by using a processing unit and a thermal treatment unit may be provided. The substrate treatment method includes a surface treatment process in which a substrate surface is modified in the processing unit, a desorption process in which the substrate surface-treated in the processing unit is heated by the upper heat source in the thermal treatment unit, thereby generating a desorption reaction on the substrate surface, and a temperature adjustment process in which the substrate is cooled by a cooling plate in the thermal treatment unit, thereby maintaining a temperature of the substrate at a set temperature range.
Abstract:
A plasma processing apparatus includes: a processing chamber in which a sample is subjected to plasma processing, including, at an upper side therein, a dielectric plate, through which microwaves are transmitted; a radio frequency power supply which supplies radio frequency power for the microwaves; a cavity resonator which resonates microwaves transmitted from the radio frequency power supply through a waveguide and is placed above the dielectric plate; and a magnetic field forming mechanism which forms a magnetic field in the processing chamber. The plasma processing apparatus further includes: a ring-shaped conductor placed inside the cavity resonator; and a circular conductor which is placed inside the cavity resonator and placed in an opening at the center of the ring-shaped conductor.
Abstract:
A plasma processing apparatus includes: a processing chamber; a first radio frequency power supply configured to supply a first radio frequency power; a second radio frequency power supply configured to supply a second radio frequency power; and a control device configured to, when the first radio frequency power is modulated by a first waveform having a first period and a second period adjacent to the first period, and the second radio frequency power supply is modulated by a second waveform having a period A and a period B, control the second radio frequency power supply such that each second radio frequency power in the period A is supplied in the first period and the second period, in which an amplitude in the second period is smaller than an amplitude in the first period, and an amplitude in the period A is larger than an amplitude in the period B.