Abstract:
The invention relates to a multicomponent copper alloy comprising [in % by weight]: Ni from 1.0 to 15.0%, Sn from 2.0 to 12.0%, Mn from 0.1 to 5.0%, Si from 0.1 to 3.0%, balance Cu and unavoidable impurities, if desired up to 0.5% of P, if desired individually or in combination up to 1.5% of Ti, Co, Cr, Al, Fe, Zn, Sb, if desired individually or in combination up to 0.5% of B, Zr, S, if desired up to 5% of Pb, and having Mn—Ni silicide phases which have a mass ratio of the elements [w(Mn)+w(Ni)]/w(Si) in the range from 1.8/1 to 7/1.
Abstract:
The object of the present invention is to provide a bronze-based alloy of low lead content, first improved in tensile strength at high temperatures, secondly contributing to the promotion of the environmental conservation including recycling, while avoiding the adverse effect of lead on human bodies by means of reduction of a lead content, and excellent from the standpoints of mass-productivity and manufacturing cost. The alloy includes 2.0 to 6.0 mass % of Sn, 3.0 to 10.0 mass % of Zn, 0.1 to 3.0 mass % of Bi, 0.1 mass %
Abstract:
An age-hardening copper alloy made of—as expressed in each case in weight %—0.4% to a maximum of 2% cobalt which is partially replaceable by nickel, 0.1% through 0.5% beryllium, optionally 0.03% through 0.5% zirconium, 0.005% through 0.1% magnesium and possibly a maximum of 0.15% of at least one element from the group including niobium, manganese, tantalum, vanadium, titanium, chromium, cerium and hafnium. The remainder is copper inclusive of production-conditioned impurities and usual processing additives. This copper alloy is used as the material for producing casting molds, in particular for the sleeves of continuous casting rolls as components of a two-roll casting installation.
Abstract:
Disclosed is a Cu—Fe—P alloy capable of enabling high strength, high electrical conductivity, and excellent softening resistance to coexist. The Cu—Fe—P alloy is suitable for use as a constituent material of a lead frame for a semiconductor device. With the Cu—Fe—P alloy with strength rendered higher by micronizing Fe-containing compounds, when enhancing softening resistance by increasing Sn content so as to exceed 0.5 mass %, at least one element selected from the group consisting of Ni, Mg, Ca, Al, Si, and Cr, in trace amounts, are caused to be additionally contained to thereby check cracking likely to occur at the time of forging and hot rolling in a process of producing the copper alloy, as a result of an increase in the Sn content.
Abstract:
The invention describes a friction bearing with a steel support shell and a lead-free bearing metal layer on the basis of copper with the main alloy elements of tin and zinc, which layer is applied to the support shell. In order to combine advantageous sliding properties with favorable mechanical resilience it is proposed that the bearing metal layer has a share of tin of 2.5 to 11% by weight and a share of zinc of 0.5 to 5% by weight, with the sum total of the shares of tin and zinc being between 3 and 13% by weight.
Abstract:
Each of junctions formed between a semiconductor device and a substrate comprises metal balls of Cu, or other materials and compounds of Sn and the metal balls, and the metal balls are bonded together by the compounds.
Abstract:
An alloy, especially for spectacle frames, jewelry and for other metal parts to be worn on the body or on items of clothing in contact with said body. The alloy consists of the following components: Sn 8-14 wt. %, Zn 1-8 wt. %, Mn 0.001-3 wt. %, P 0.001 0.3 wt. %, Fe 0.001 0.5%, the remainder being Cu.
Abstract:
Brass consists essentially of Cu, Sn, Bi, Fe, Ni and P in weight ratios respectively of 58.0-63.2%, 0.3-2.0%, 0.7-2.5%, 0.05-0.3%, 0.10-0.50% and 0.05-0.15% plus the balance of Zn and unavoidable impurities to exhibit excellent tolerance for dezincification, hot forgeability and machinability.
Abstract:
A copper base alloy consisting essentially of tin in an amount from about 1.0 to 11.0% by weight, phosphorous in an amount from about 0.01 to 0.35% by weight, iron in an amount from about 0.01 to about 0.8% by weight, and the balance essentially copper, including phosphide particles uniformly distributed throughout the matrix, is described. The alloy is characterized by an excellent combination of physical properties. The process of forming the copper base alloy described herein includes casting, homogenizing, rolling, process annealing and stress relief annealing.
Abstract:
Lead-free metallurgy powder for use in manufacturing a shaped bronze part by powder metallurgy techniques which consists essentially of a substantially homogeneous blend of metal powders having about 90 parts copper, about 10 parts tin and an amount of bismuth in the range from an amount effective to improve the machinability of the shaped bronze part up to about 5% weight are disclosed. Lead-free metallurgy powder for use in manufacturing a shaped brass part by powder metallurgy techniques which consists essentially of a substantially homogeneous blend of metal powders about 70-90 parts copper, about 10-30 parts zinc and an amount of bismuth in the range from an amount effective to improve the machinability of the shaped brass part up to about 5% weight are also disclosed.