Abstract:
A method and apparatus are described for integrating dual gate oxide (DGO) transistor devices (50, 52) and core transistor devices (51, 53) on a single substrate (15) having a silicon germanium channel layer (21) in the PMOS device areas (112, 113), where each DGO transistor device (50, 52) includes a metal gate (25), an upper gate oxide region (60, 84) formed from a second, relatively higher high-k metal oxide layer (24), and a lower gate oxide region (58, 84) formed from a first relatively lower high-k layer (22), and where each core transistor device (51, 53) includes a metal gate (25) and a core gate dielectric layer (72, 98) formed from only the second, relatively higher high-k metal oxide layer (24).
Abstract:
A method for making a semiconductor device is provided which comprises (a) providing a semiconductor structure equipped with a gate (209) and a channel region, said channel region being associated with the gate; (b) depositing a first sub-layer (231) of a first stressor material over the semiconductor structure, said first stressor material containing silicon-nitrogen bonds and imparting tensile stress to the semiconductor structure; (c) curing the first stressor material through exposure to a radiation source; (d) depositing a second sub-layer (233) of a second stressor material over the first sub-layer, said second stressor material containing silicon-nitrogen bonds and imparting tensile stress to the semiconductor structure; and (e) curing the second sub-layer of stressor material through exposure to a radiation source.
Abstract:
A method of forming a gate dielectric layer includes forming a first dielectric layer over a semiconductor substrate using a first plasma, performing a first in-situ plasma nitridation of the first dielectric layer to form a first nitrided dielectric layer, forming a second dielectric layer over the first dielectric layer using a second plasma, performing a second in-situ plasma nitridation of the second dielectric layer to form a second nitrided dielectric layer; and annealing the first nitrided dielectric layer and the second nitrided dielectric layer, wherein the gate dielectric layer comprises the first nitrided dielectric layer and the second nitrided dielectric layer. In other embodiments, the steps of forming a dielectric layer using a plasma and performing an in-situ plasma nitridation are repeated so that more than two nitrided dielectric layers are formed and used as the gate dielectric layer.
Abstract:
A semiconductor device has at least two tensile stressor layers that are cured with UV radiation. A second tensile stressor layer is formed after a first stressor layer. In some examples, the tensile stressor layers include silicon nitride and hydrogen. In some examples, the second tensile stressor layer has a greater shrinkage percentage due to the curing than the first tensile stressor layer. In one form, the second tensile stressor layer after the curing exerts a greater tensile stress than the first tensile stressor layer. The tensile stressors layers are utilized to improve carrier mobility in an N-channel transistor and thus enhance transistor performance. In one form a single group of overlying tensile stressor layers is provided with each layer being increasingly thicker and having increasingly more hydrogen prior to being cured. In other embodiments multiple overlying groups are formed, each group having a similar repeating depth and hydrogen profile.
Abstract:
Transmittance of a photomask is determined using optical metrology. In particular, reflectance of a portion of the photomask is determined by directing an incident beam of light at the portion of the photomask. The reflectance is determined by measuring light diffracted from the portion of the photomask. One or more geometric features of the portion of the photomask are determined using the measured light diffracted from the portion of the photomask. A wave coupling is determined using the determined one or more geometric features of the portion of the photomask. The transmittance of the photomask is determined using the determined wave coupling and the determined reflectance of the portion of the photomask.
Abstract:
A power-on reset circuit includes a voltage-dividing circuit, a first switch and a second switch. The voltage-dividing circuit includes a first resistor and a second resistor connected in series. A first terminal of the voltage-dividing circuit is configured for connect to a power source, a second terminal of the voltage-dividing circuit is grounded. A first switch includes an input terminal, a control terminal, and an output terminal. The input terminal of the first switch is connected to the first terminal of the voltage-dividing circuit via the first resistor, and the output terminal of the first switch is grounded. A second switch includes an input terminal connected to the first terminal of the voltage-dividing circuit, a control terminal connected to the control terminal of the first switch, and an output terminal connected to a reset terminal of an electronic device.
Abstract:
A method of forming a semiconductor device includes providing a substrate for the semiconductor device. A base oxide layer is formed overlying the substrate by applying a rapid thermal oxidation (RTO) of the substrate in the presence of oxygen. A nitrogen-rich region is formed within and at a surface of the base oxide layer. The nitrogen-rich region overlies an oxide region in the base oxide layer. Afterwards, the semiconductor device is annealed in a dilute oxygen and hydrogen-free ambient of below 1 Torr partial pressure of the oxygen. The annealing heals bond damage in both the oxide region and the nitrogen-rich region in the base oxide layer. After annealing the semiconductor device in the dilute oxygen ambient, in-situ steam generation (ISSG) is used to grow and density the oxide region in the base oxide layer at an interface between the substrate and base oxide layer.
Abstract:
The present invention is directed to novel apoptosis polypeptides such as the Apop1, Apop2, and Apop3 proteins and related molecules which are involved in modulating apoptosis and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention. Further provided by the present invention are method for identifying novel compositions which modulate the biological activity of Apop1, Apop2, and Apop3, and the use of such compositions in diagnosis and treatment of disease.
Abstract:
A method of making a semiconductor device includes a substrate having a semiconductor layer having a first portion for non-volatile memory and a second portion exclusive of the first portion. A first dielectric layer is formed on the semiconductor layer. A plasma nitridation is performed on the first dielectric layer. A first plurality of nanoclusters is formed over the first portion and a second plurality of nanoclusters over the second portion. The second plurality of nanoclusters is removed. A second dielectric layer is formed over the semiconductor layer. A conductive layer is formed over the second dielectric layer.
Abstract:
The present invention is directed to novel polypeptides, nucleic acids and related molecules which have an effect on or are related to the cell cycle. Also, provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention. Further provided by the present invention are methods for identifying novel compositions which mediate cell cycle bioactivity, and the use of such compositions in diagnosis and treatment of disease.