Abstract:
A flexible integrated circuit that includes a first dielectric layer having a first section at one polarity and a second section at an opposing polarity, wherein the first section and the second section are separated by dielectric material within first dielectric layer; a second dielectric layer having a first side wall that is electrically connected to the first section and a second side wall that is electrically connected to the second section; and a third dielectric layer having a base that is electrically connected to the first side wall and the second side wall, wherein the second dielectric layer is between the first dielectric layer and the third dielectric layer, wherein the base, the first and second side walls and the first and second sections form an antenna that is configured to send or receive wireless signals.
Abstract:
A board-edge interconnection module features integrated capacitive coupling, which enables a board design employing the module to avoid having AC capacitors and flexible cables with bulky connectors. The recovered real estate enables further miniaturization, enabling the component to be used on a wide variety of devices, including ultra-mobile computing devices.
Abstract:
Semiconductor multi-die structures having intermediate vertical side chips, and packages housing such semiconductor multi-die structures, are described. In an example, a multi-die semiconductor structure includes a first main stacked dies (MSD) structure having a first substantially horizontal arrangement of semiconductor dies. A second MSD structure having a second substantially horizontal arrangement of semiconductor dies is also included. An intermediate vertical side chip (i-VSC) is disposed between and electrically coupled to the first and second MSD structures.
Abstract:
Embodiments of the present disclosure are directed toward integrated circuit (IC) packaging techniques and configurations for small form-factor or wearable devices. In one embodiment, an apparatus may include a substrate having a first side and a second side disposed opposite to the first side and a sidewall disposed between the first side and the second side, the sidewall defining a perimeter of the substrate, and a plurality of through-substrate vias (TSVs) disposed between the first side and the second side of the substrate, and a first dielectric layer disposed on the first side and including electrical routing features to route electrical signals of one or more dies in a plane of the first dielectric layer. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure are directed towards an integrated circuit (IC) package. In embodiments, an integrated circuit (IC) package may include a flexible substrate. The flexible substrate may have a plurality of dies coupled therewith. The IC package may include a first encapsulation material, having a first rigidity, disposed on the flexible substrate to at least partially encapsulate each die of the plurality dies. The IC package may further include a second encapsulation material, having a second rigidity, disposed on the flexible substrate. In embodiments, the second rigidity and the first rigidity are different from one another. Other embodiments may be described and/or claimed.
Abstract:
Particular embodiments described herein provide for an electronic device, such as a notebook computer or laptop, that includes a circuit board coupled to a plurality of electronic components (which includes any type of components, elements, circuitry, etc.). One particular example implementation of the electronic device may include a low-profile hinge design that includes a first segment that connects to a first element using a first coupler and to a second segment that connects to the first segment using a second coupler, where the second segment connects to a second element using a third coupler. The first coupler, the second coupler, and the third coupler may each have a first coupling arm and a second coupling arm and the first coupling arm can be offset from a plane of the second coupling arm by about five degrees to about forty-five degrees.
Abstract:
Particular embodiments described herein provide for an electronic device, such as a notebook computer or laptop, that includes a circuit board coupled to a plurality of electronic components (which includes any type of components, elements, circuitry, etc.). One particular example implementation of the electronic device may include a low-profile hinge design that includes a first segment that connects to a first element using a first coupler and to a second segment that connects to the first segment using a second coupler, where the second segment connects to a second element using a third coupler. The first coupler, the second coupler, and the third coupler may each have a first coupling arm and a second coupling arm and the first coupling arm can be offset from a plane of the second coupling arm by about five degrees to about forty-five degrees.
Abstract:
According to various examples, a device is described. The device may include a first package substrate. The device may also include a first mold layer with a first thickness. The device may also include a second mold layer with a second thickness proximal to the first mold layer. The second thickness may be larger than the first thickness. The first mold layer may include a plurality of first interconnects coupled to the first package substrate. The second mold layer may include a plurality of second interconnects configured to couple the first package substrate to a printed circuit board.
Abstract:
The present disclosure is directed to semiconductor packages, and methods for making them, which includes a substrate with a top surface and a bottom surface, a substrate recess in the bottom surface of the substrate, a first device positioned over the top surface of the substrate, which has the first device at least partially overlapping the substrate recess, a mold material in the substrate recess, which has the mold material overlapping the bottom surface of the substrate adjacent to the substrate recess, a second device positioned in the substrate recess, and a plurality of interconnect vias in the substrate, which has at least one of the plurality interconnect vias coupled to the first and second devices to provide a direct signal connection therebetween that minimizes signal latency.