Abstract:
A micromachine package includes a micromachine chip having a micromachine area in a front surface of the micromachine chip. The package further includes a controller chip having a rear surface and a front surface. Bond pads are on the front surface of the controller chip. A bead secures the rear surface of the controller chip to the front surface of the micromachine chip. By mounting the controller chip directly on the micromachine chip, the size of the package is minimized. Further, the bead and controller chip form an enclosure around the micromachine area. This enclosure protects the micromachine area from the ambient environment.
Abstract:
An image sensor package includes an image sensor having an upper surface. The image sensor further includes an active area and bond pads on the upper surface. A window is supported above the active area by a window support. A step up ring is mounted above a noncritical region of the upper surface of the image sensor between the active area and the bond pads. Electrically conductive traces on the step up ring are electrically connected to the bond pads by bond wires. An inner package body is formed between the step up ring and the window support and mechanically locks the window in place. An outer package body is formed to enclose the bond wires, the bond pads, and outer sides of the step up ring. The outer package body has outer sides coplanar with sides of the image sensor such that the image sensor assembly is chip size.
Abstract:
A structure comprises a substrate with electronic components formed on a first surface of the substrate. The structure includes a scribe line on a first surface of the substrate. The structure includes a trench formed by a laser on the second or back-side surface of the substrate, thus protecting the front-side surface of the substrate and, more particularly, the electronic component such as an integrated circuit and/or functional unit on the front-side surface of the substrate during singulation. Since, according to the invention, no saw blade is used, the width of the scribe line does not need to be any larger than the width of the beam from the laser plus some minimal tolerance for alignment. As a result, using the invention, the width of scribe line is on the order of twenty-four times smaller than the width of scribe lines required by the prior art methods.
Abstract:
The invention provides a manufacturing process for making chip-size semi-conductor packages (“CSPs”) at the wafer-level without the added size, cost, and complexity of substrates in the packages or the need to overmold them with plastic. One embodiment of the method includes the provision of a semiconductor wafer with opposite top and bottom surfaces and a plurality of dies integrally defined therein. Each die has an electronic device formed in a top surface thereof, and one or more electrically conductive vias extending therethrough that electrically connect the electronic device to the bottom surface of the die. The openings for the vias are formed ablatively with a laser and plated through with a conductive material. In a BGA form of the CSP, the vias connects the electronic device to lands on the bottom surface of the die. The lands may each have a bump of a conductive metal, e.g., solder, attached to it that functions as an input-output terminal of the CSP. When fabrication of the wafer is complete, the finished packages are singulated from the wafer using conventional wafer cutting techniques.
Abstract:
Electrically conductive interior traces and exterior traces are formed on interior and exterior surfaces, respectively, of a window. The interior traces are electrically connected to the exterior traces by electrically conductive vias extending through the window. To mount the window to an image sensor, the interior traces are aligned with bond pads on a front surface of the image sensor. Flip chip bumps are formed between the interior traces and the bond pads thus mounting the window to the image sensor. A sealer is applied to form a seal between the window and the image sensor and to protect an active area of the image sensor.
Abstract:
An image sensor package includes an image sensor, a window, and a molding, where the molding includes a lens holder extension portion extending upwards from the window. The lens holder extension portion includes a female threaded aperture extending from the window such that the window is exposed through the aperture. A lens is supported in a threaded lens support. The threaded lens support is threaded into the aperture of the lens holder extension portion. The lens is readily adjusted relative to the image sensor by rotating the lens support.
Abstract:
A digital camera module packaging method includes: first, providing a carrier (20) including a base (21) defining a chamber (214) and a lead frame (23). The lead frame has a plurality of conduction pieces (233) embedded in the base. One end of each conduction piece is exposed at one surface of the base, and another end of the conduction piece is exposed at another surface of the base. An image sensor chip (30) with a photosensitive area (301) and a plurality of chip pads (302) is then mounted in the chamber. A plurality of wires (40) is then provided. Each wire electrically connects a corresponding chip pad of the image sensor chip and one exposed end of a corresponding conduction piece of the carrier. A holder (50) is then provided. The carrier is mounted to the holder. Finally, a lens module (70) is mounted on the holder.
Abstract:
A method of forming an optical module includes mounting an image sensor to a base of a substrate and bonding a lens housing to a sidewall of the substrate. A mounting surface of the lens housing includes a locking feature having a horizontal surface and a vertical surface. The sidewall of the substrate includes a joint surface. To bond the lens housing to the sidewall of the substrate, a bond is formed between the horizontal surface of the locking feature of the lens housing and the joint surface of the sidewall. Further, a bond is formed between the vertical surface of the locking feature of the lens housing and an interior surface of the sidewall.
Abstract:
A digital camera module (200) includes a carrier (20), an image sensor chip (30), a number of wires (50), a holder (60), and a lens module (70). The carrier includes a base (21) and a leadframe (23) embedded in the base. The base includes a board (211), a sidewall (213) and a cavity (24). The leadframe includes a number of conductive leads (233) spaced from each other. Each lead has a first terminal portion (235), a second terminal portion (236), and an interconnecting portion (237) connecting the first and second terminal portions. The chip is mounted on the carrier, and has an active area (301). The wires electrically connect the chip and the leadframe. The holder is mounted to the carrier to close the cavity. The lens module is received in the holder and guides light to the active area of the chip.
Abstract:
An IC chip package includes a substrate (2), a chip (5), a plurality of bonding wires (52), and a cover (6). The substrate has a top surface, a receiving chamber (23) having an opening at the top surface, a plurality of solder pads (3) arranged around the top surface and respectively corresponding to the solder pads arranged at a bottom surface opposite to the top surface, and a plurality of vias (4) having conductive material electrically connecting the top solder pads with the bottom solder pads defined therein. The chip is mounted in the receiving chamber, and has a plurality of chip solder pads (51) arranged around a top surface thereof. The bonding wires respectively electrically connect the top solder pads of the substrate with the chip solder pads. The cover is fastened to the top surface of the substrate, and covers the opening.