Abstract:
Disclosed is a method for a femtocell to reduce interference with an overlapping macrocell. The femtocell determines soft-frequency-reuse (“SFR”) information of the macrocell. From that information, the femtocell determines which frequency sub-channels are assigned by the macrocell for its cell-center users and which frequency sub-channels are assigned for cell-edge users. (Cell-edge users are given a higher transmission power profile in order to overcome potential interference with neighboring macrocells.) Then, the femtocell selects from the cell-center user frequency sub-channels for transmission to the femtocell's users. By transmitting on the cell-center user frequency sub-channels, the femtocell reduces interference with the overlapping macrocell. The femtocell continues to update its knowledge of the macrocell's SFR information and re-assigns frequency sub-channels as the SFR changes. If the macrocell detects that one of its cell-center users is “close enough” to the femtocell, then the macrocell re-assigns the cell-center user as a cell-edge user to overcome interference.
Abstract:
A method for determining the aspect ratio of an image signal and an image apparatus using the same is provided. The image apparatus includes a sync signal separation unit which separates a sync signal from an image signal, an aspect ratio determination unit which determines an aspect ratio of the image signal using a voltage level of the separated sync signal, and a signal processing unit which processes the image signal according to the aspect ratio.
Abstract:
A communications system provides a robust and fast inter-base station handoff mechanism, e.g. for networks using Enhanced Base Stations (EBS) equipment. A method for connecting a mobile device to a destination base station in the wireless communications system, may include steps of receiving a mobile device measurement report, transferring context information from a serving base station to possible target base stations, and receiving admission control information from possible target base stations. A priority list of the possible target base stations is calculated and sent to the mobile device. The mobile device connects to one or more of possible target base stations according to the priority list. The method may also entail receiving a release message from one of the possible target base stations to which the mobile device has successfully established a wireless connection, to allow release of resources of the prior serving base station.
Abstract:
A device classifies access or control channel signals into a first class or a second class, initializes a dormancy timer associated with the device, and sets the dormancy timer to a default value. The device also sets a signal target utilization threshold, receives actual signals via the access or control channel, and identifies, when a number of the actual signals exceeds the signal target utilization threshold, a particular signal, from the actual signals, as belonging to the first class or the second class. The device further increases the default value of the dormancy timer when the particular signal belongs to the first class, and decreases the default value of the dormancy timer when the particular signal belongs to the second class.
Abstract:
The present invention provides a method for transmitting relay link uplink feedback information, a relay station and a base station, and the method comprises: determining timing relationship for transmitting the uplink feedback information according to relay subframe configuration (S202); a relay station determining an uplink relay subframe for transmitting the uplink feedback information according to the timing relationship (S204), and transmitting the uplink feedback information via the uplink relay subframe (S206). The present invention ensures the reliability of downlink communication between the base station and the relay station, and the transmission of this feedback information would not cause effect on user equipment.
Abstract:
One or more devices determine uplink signal strength for a machine-to-machine (M2M) device using a wireless access network. The one or more devices identify a default uplink transmission mode that requires the M2M device to employ transmission time interval (TTI) bundling, when the uplink signal strength is below a particular threshold, and identify a default uplink transmission mode that requires the M2M device to not employ TTI bundling, when the uplink signal strength is not below the particular threshold. The one or more devices store, in a memory, the default transmission mode for the M2M device. The one or more devices retrieve, from the memory and during a wake-up time window associated with the M2M device, the default transmission mode for the M2M device and construct, for the M2M device, an uplink scheduling grant based on the stored default transmission mode.
Abstract:
This invention relates to process for preparing fluorinated dyes selected from the group consisting of compounds of the general formulae (I) and (III) and mixtures thereof by reacting the corresponding compounds which do not have R12 or R30 as substituents with compounds of the general formula R12A or R30A where A is selected from the group consisting of I and Br, the compounds obtained from said process and the use of these fluorinated dyes in electrophoretic displays.
Abstract:
A semiconductor package includes a substrate, a first semiconductor chip stacked on the substrate and a second semiconductor chip stacked on the first semiconductor chip. In the semiconductor package, the second semiconductor chip is rotated to be stacked on the first semiconductor chip. The semiconductor package is used in an electronic system.
Abstract:
Ghrelin O-acyltransferase (GOAT) is inhibited with designed small molecules. Methods comprise contacting the GOAT with an inhibitor and detecting a resultant inhibition.
Abstract:
A communications system for providing a user's mobile station (MS) with an Internet Protocol (IP) connectivity, has an IP network gateway for allocating an IP address to the MS to enable it to access an IP network. First and second base stations are respectively configured to support communications of the MS over first and second radio access networks using different radio access technologies. A first access gateway provides an interface between the IP network gateway and the first radio access network, whereas a second access gateway provides an interface between the IP network gateway and the second radio access network. A handover interface is provided between the first access gateway and the second access gateway for enabling the MS to switch between the first and second radio access networks with minimum latency.