Abstract:
A semiconductor device in which parasitic capacitance is reduced is provided. A first oxide insulating layer and a first oxide semiconductor layer are sequentially formed over a first insulating layer. A first conductive layer is formed over the first oxide semiconductor layer and etched to form a second conductive layer. The first oxide insulating layer and the first oxide semiconductor layer are etched with the second conductive layer as a mask to form a second oxide insulating layer and a second oxide semiconductor layer. A planarized insulating layer is formed over the first insulating layer and the second conductive layer. A second insulating layer, a source electrode layer, and a drain electrode layer are formed by etching the planarized insulating layer and the second conductive layer. A third oxide insulating layer, a gate insulating layer, and a gate electrode layer are formed over the second oxide semiconductor layer.
Abstract:
First to third insulators are successively formed in this order over a first conductor over a semiconductor substrate; a hard mask with a first opening is formed thereover; a resist mask with a second opening is formed thereover; a third opening is formed in the third insulator; a fourth opening is formed in the second insulator; the resist mask is removed; a fifth opening is formed in the first to third insulators; a second conductor is formed to cover an inner wall and a bottom surface of the fifth opening; a third conductor is formed thereover; polishing treatment is performed so that the hard mask is removed, and that levels of top surfaces of the second and third conductors and the third insulator are substantially equal to each other; and an oxide semiconductor is formed thereover. The second insulator is less permeable to hydrogen than the first and third insulators, the second conductor is less permeable to hydrogen than the third conductor.
Abstract:
An object is to establish a processing technique in manufacture of a semiconductor device in which an oxide semiconductor is used. A gate electrode is formed over a substrate, a gate insulating layer is formed over the gate electrode, an oxide semiconductor layer is formed over the gate insulating layer, the oxide semiconductor layer is processed by wet etching to form an island-shaped oxide semiconductor layer, a conductive layer is formed to cover the island-shaped oxide semiconductor layer, the conductive layer is processed by dry etching to form a source electrode, and a drain electrode and part of the island-shaped oxide semiconductor layer is removed by dry etching to form a recessed portion in the island-shaped oxide semiconductor layer.
Abstract:
To provide a semiconductor device which occupies a small area and is highly integrated. The semiconductor device includes an oxide semiconductor layer, an electrode layer, and a contact plug. The electrode layer includes one end portion in contact with the oxide semiconductor layer and the other end portion facing the one end portion. The other end portion includes a semicircle notch portion when seen from the above. The contact plug is in contact with the semicircle notch portion.
Abstract:
A semiconductor device in which parasitic capacitance is reduced is provided. A first oxide insulating layer and a first oxide semiconductor layer are sequentially formed over a first insulating layer. A first conductive layer is formed over the first oxide semiconductor layer and etched to form a second conductive layer. The first oxide insulating layer and the first oxide semiconductor layer are etched with the second conductive layer as a mask to form a second oxide insulating layer and a second oxide semiconductor layer. A planarized insulating layer is formed over the first insulating layer and the second conductive layer. A second insulating layer, a source electrode layer, and a drain electrode layer are formed by etching the planarized insulating layer and the second conductive layer. A third oxide insulating layer, a gate insulating layer, and a gate electrode layer are formed over the second oxide semiconductor layer.
Abstract:
A minute transistor is provided. A transistor with low parasitic capacitance is provided. A transistor having high frequency characteristics is provided. A semiconductor device including the transistor is provided. A semiconductor device includes an oxide semiconductor, a first conductor, a second conductor, a third conductor, a first insulator, and a second insulator. The first conductor overlaps with the oxide semiconductor with the first insulator positioned therebetween. The second insulator has an opening and a side surface of the second insulator overlaps with a side surface of the first conductor in the opening with the first insulator positioned therebetween. Part of a surface of the second conductor and part of a surface of the third conductor are in contact with the first insulator in the opening. The oxide semiconductor overlaps with the second conductor and the third conductor.
Abstract:
A semiconductor device with favorable electrical characteristics is provided. The semiconductor device includes an insulating layer, a semiconductor layer over the insulating layer, a source electrode layer and a drain electrode layer electrically connected to the semiconductor layer, a gate insulating film over the semiconductor layer, the source electrode layer, and the drain electrode layer, and a gate electrode layer overlapping with part of the semiconductor layer, part of the source electrode layer, and part of the drain electrode layer with the gate insulating film therebetween. A cross section of the semiconductor layer in the channel width direction is substantially triangular or substantially trapezoidal. The effective channel width is shorter than that for a rectangular cross section.
Abstract:
A semiconductor device in which an increase in oxygen vacancies in an oxide semiconductor layer can be suppressed is provided. A semiconductor device with favorable electrical characteristics is provided. A highly reliable semiconductor device is provided. A semiconductor device includes an oxide semiconductor layer in a channel formation region, and by the use of an oxide insulating film below and in contact with the oxide semiconductor layer and a gate insulating film over and in contact with the oxide semiconductor layer, oxygen of the oxide insulating film or the gate insulating film is supplied to the oxide semiconductor layer. Further, a conductive nitride is used for metal films of a source electrode layer, a drain electrode layer, and a gate electrode layer, whereby diffusion of oxygen to the metal films is suppressed.
Abstract:
Provided is a semiconductor device that occupies a small area, a highly integrated semiconductor device, or a semiconductor device with high productivity. To fabricate an integrated circuit, a first insulating film is formed over a p-channel transistor; a transistor including an oxide semiconductor is formed over the first insulating film; a second insulating film is formed over the transistor; an opening, that is, a contact hole part of a sidewall of which is formed of the oxide semiconductor of the transistor, is formed in the first insulating film and the second insulating film; and an electrode connecting the p-channel transistor and the transistor including an oxide semiconductor to each other is formed.
Abstract:
An object is to provide a transistor including an oxide semiconductor having favorable electrical characteristics and a manufacturing method thereof. A semiconductor device includes an oxide semiconductor film and an insulating film over a substrate. An end portion of the oxide semiconductor film is in contact with the insulating film. The oxide semiconductor film includes a channel formation region and regions containing a dopant between which the channel formation region is sandwiched. The semiconductor device further includes a gate insulating film over and in contact with the oxide semiconductor film, a gate electrode with a sidewall insulating film over the gate insulating film, and a source electrode and a drain electrode in contact with the sidewall insulating film, the oxide semiconductor film, and the insulating film.